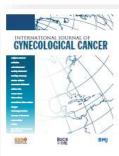
ASSEMBLEA MaNGO MILANO

STANDARD TREATMENTS AND NEW DIRECTIONS IN GYNAECOLOGICAL CANCERS

MILANO June 26th-29th, 2025

Responsabili Scientifici: NICOLETTA COLOMBO, FRANCESCO RASPAGLIESI

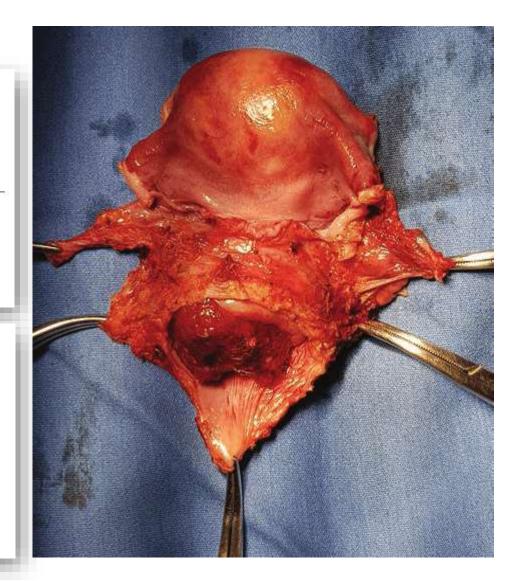

CRITICAL ANALYSIS ON SURGICAL INDICATIONS

Giorgio Bogani, M.D., Ph.D.

Disclosures

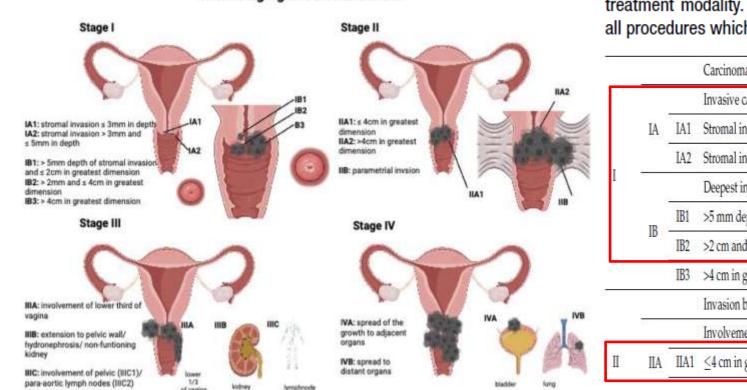
- Consultant for Novartis AG pharma
- Consultant for Fondazione Serono
- Consultant for Corcept Therapeutics
- Founding from Janssen
- Funding from Astellas
- Founding from the Italian Ministry of Health (GR2019)

ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer – Update 2023*


OPEN ACCESS

David Cibula,^{1,2} Maria Rosaria Raspollini,³ François Planchamp ⁽¹⁾,⁴ Carlos Centeno,⁵ Cyrus Chargari ⁽²⁾,⁶ Ana Felix,^{7,8} Daniela Fischerová ⁽²⁾,^{1,2} Daniela Jahnn-Kuch,⁹ Florence Joly,¹⁰ Christhardt Kohler,^{11,12} Sigurd Lax,^{13,14} Domenica Lorusso,^{15,16} Umesh Mahantshetty,¹⁷ Patrice Mathevet,¹⁸ Raj Naik,¹⁹ Remi A Nout,^{20,21} Ana Oaknin ⁽²⁾,^{22,23} Fedro Peccatori,²⁴ Jan Persson,^{25,26} Denis Querleu ⁽³⁾,^{15,27} Sandra Rubio Bernabé ⁽⁶⁾,²⁸ Maximilian P Schmid,²⁹ Artem Stepanyan ⁽⁶⁾,³⁰ Valentyn Svintsitskyi,³¹ Karl Tamussino,³² Ignacio Zapardiel ⁽⁶⁾,³³

Cervical Cancer, Version 1.2024


Featured Updates to the NCCN Guidelines

 Nadeem R. Abu-Rustum, MD^{1,*}; Catheryn M. Yashar, MD^{2,*}; Rebecca Arend, MD³; Emma Barber, MD⁴;
 Kristin Bradley, MD⁵; Rebecca Brooks, MD⁶; Susana M. Campos, MD, MPH, MS⁷; Junzo Chino, MD⁸; Hye Sook Chon, MD⁹; Marta Ann Crispens, MD¹⁰; Shari Damast, MD¹¹; Christine M. Fisher, MD, MPH¹²; Peter Frederick, MD¹³; David K. Gaffney, MD, PhD¹⁴; Stephanie Gaillard, MD, PhD¹⁵; Robert Giuntoli II, MD¹⁶; Scott Glaser, MD¹⁷; Jordan Holmes, MD, MPH¹⁸, Brooke E. Howitt, MD¹⁹; Jayanthi Lea, MD²⁰; Gina Mantia-Smaldone, MD²¹; Andrea Mariani, MD²²; David Mutch, MD²³; Christa Nagel, MD²⁴; Larissa Nekhlyudov, MD, MPH⁷; Mirna Podoll, MD¹⁰; Kerry Rodabaugh, MD²⁵; Ritu Salani, MD, MBA²⁶; John Schorge, MD²⁷; Jean Siedel, DO, MS²⁸; Rachel Sisodia, MD²⁹; Pamela Soliman, MD, MPH³⁰; Stefanie Ueda, MD³¹; Renata Urban, MD³²; Emily Wyse³³; Nicole R. McMillian, MS, CHES^{34,*}; Shaili Aggarwal, PhD^{34,*}; and Sara Espinosa, PhD^{34,*}

CERVICAL CANCER TREATMENT: SURGERY IN THE EARLY-STAGE

FIGO staging of cervical cancer

lymphrode

of vagina

Radical surgery by a gynecological oncologist is the preferred treatment modality. Laparotomy is the standard approach for all procedures which include radical parametrectomy [I, A].

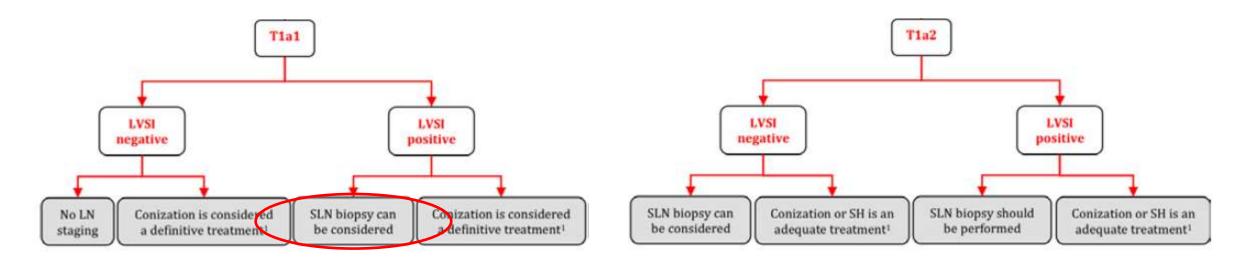
			Carcinoma strictly confined to the cervix
			Invasive carcinoma with maximum depth of invasion \leq 5 mm
	IA	IA1	Stromal invasion \leq 3 mm in depth
		IA2	Stromal invasion > 3 mm and \leq 5 mm in depth
	IB		Deepest invasion > 5 mm; lesion limited to cervix uteri with size measured according to maximum tumor diameter
		IB1	>5 mm depth of stromal invasion and \leq 2 cm in greatest dimension
		IB2	>2 cm and \leq 4 cm in greatest dimension
		IB3	>4 cm in greatest dimension
			Invasion beyond the uterus, but no extension into the lower third of the vagina or to the pelvic wall
	24		Involvement limited to the upper two thirds of the vagina without parametrial invasion
	IIA	IIA1	≤4 cm in greatest dimension

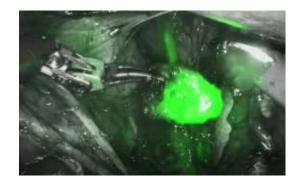
1

1

Management of stage T1a1 disease

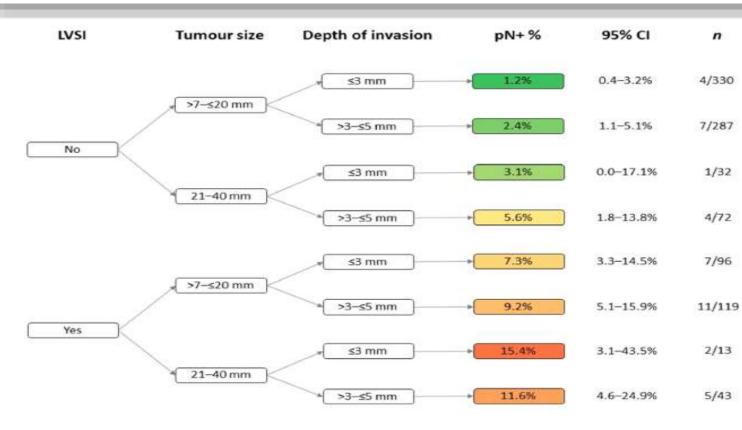
- Management of patients with stage T1a1 disease should be individualized depending on the age, the desire for fertility preservation and the presence or absence of LVSI.
- In case of positive margins (except for preinvasive disease in ectocervix), a repeat conisation should be performed to rule out more extensive invasive disease.
- **B** Lymph node staging is not indicated in T1a1 LVSI-negative patients but can be considered in T1a1 LVSI-positive patients. Sentinel lymph node biopsy (without additional pelvic lymph node dissection) is an acceptable method of lymph node staging.
- **C** Conisation can be considered a definitive treatment as hysterectomy does not improve the outcome.
- **C** Radical surgical approaches such as radical hysterectomy or parametrectomy represent overtreatment for patients with T1a1 disease.




Management of stage T1a2 disease

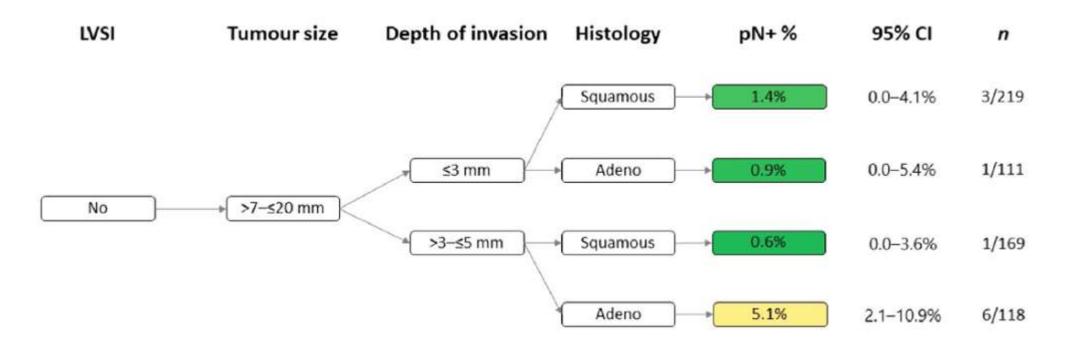
- **C** In patients with stage T1a2 disease, conisation alone or simple hysterectomy is an adequate treatment.
- **C** Parametrial resection is not indicated.
- **B** Lymph node staging can be considered in LVSI-negative patients but should be performed in LVSI-positive patients. Sentinel lymph node biopsy alone (without additional pelvic lymph node dissection) appears to be an acceptable method of LN staging.
- *
- Routine completion of hysterectomy is not recommended after conservative management of stage T1a disease.

CERVICAL CANCER TREATMENT: LSVI



Risk factors for lymph node metastasis in women with FIGO 2018 IA cervical cancer with a horizontal spread of > 7 mm

Hans H.B. Wenzel^{a,*}, Tine H. Schnack^{b,c}, Maaike A. Van der Aa^a, Pernille T. Jensen^{d,e,f}, Claus K. Høgdall^b, Anna Norberg Hardie^g, Henrik Falconer^g, Ruud L.M. Bekkers^{h,i}, Dutch, dANish and sweDish gynaEcoLogIcal ONcology (DANDELION) research group



Characteristics	Odds ratio (95 % confidence interval)		
Lymphovascular space invasion			
No	(ref.)		
Yes	4.26 (2.24-8.32) ^a		
Depth of invasion			
≤ 3 mm	(ref.)		
$> 3 \text{ mm} - \le 5 \text{ mm}$	1.40 (0.73-2.80)		
Tumour size			
≤ 20 mm	(ref.)		
21-40 mm	1.83 (0.87-3.64)		
Histology			
Squamous cell carcinoma	(ref.)		
Adenocarcinoma	1.27 (0.63-2.46)		

Risk factors for lymph node metastasis in women with FIGO 2018 IA cervical cancer with a horizontal spread of > 7 mm

Hans H.B. Wenzel^{a,*}, Tine H. Schnack^{b,c}, Maaike A. Van der Aa^a, Pernille T. Jensen^{d,e,f}, Claus K. Høgdall^b, Anna Norberg Hardie^g, Henrik Falconer^g, Ruud L.M. Bekkers^{h,i}, Dutch, dANish and sweDish gynaEcoLogIcal ONcology (DANDELION) research group

MANAGEMENT OF STAGES T1b1/T2a1

General recommendation

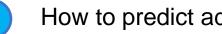
Treatment strategy should aim for the avoidance of combining radical surgery and radiotherapy due to the highest morbidity after combined treatment.

Surgical treatment

B

- B Radical surgery by a gynaecological oncologist is the preferred treatment modality. Minimal invasive approach is favored.
- **B** The standard lymph node staging procedure is systematic pelvic lymphadenectomy. Sentinel node biopsy before pelvic lymphadenectomy is strongly recommended. Combination of blue dye with radiocolloid or use of indocyanine green alone are the recommended techniques.
 - Lymph node assessment should be performed as the first step of surgical management. Intraoperative assessment of lymph node status (frozen section) is recommended. All sentinel nodes from both sides of the pelvis and/or any suspicious lymph nodes should be sent for frozen section. If sentinel node is not detected, intraoperative assessment of the pelvic lymph nodes should be considered.

MANAGEMENT OF STAGES T1b1/T2a1


General recommendation

Treatment strategy should aim for the avoidance of combining radical surgery and radiotherapy due to the highest morbidity after combined treatment.

Route of surgery

Surgical radicality

How to predict adjuvant therapy

CERVICAL CANCER: SURGICAL ROUTE

The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer

David Cibula, MD,* Richard Pötter, MD,† François Planchamp, MSc,‡ Elisabeth Avall-Lundqvist, MD,§
Daniela Fischerova, MD,* Christine Haie Meder, MD,// Christhardt Köhler, MD,¶ Fabio Landoni, MD,#
Sigurd Lax, MD,** Jacob Christian Lindegaard, MD,†† Umesh Mahantshetty, MD,‡‡
Patrice Mathevet, MD,§§ W. Glenn McCluggage, MD,//// Mary McCormack, MD,¶¶ Raj Naik, MD,##
Remi Nout, MD,*** Sandro Pignata, MD,†† Jordi Ponce, MD,‡‡ Denis Querleu, MD,‡
Francesco Raspagliesi, MD,§§§ Alexandros Rodolakis, MD,///// Karl Tamussino, MD,¶¶¶
Pauline Wimberger, MD,### and Maria Rosaria Raspollini, MD****

- Para-aortic lymph node dissection, at least up to inferior mesenteric artery, may be considered in locally advanced cervical cancer with negative para-aortic lymph nodes on imaging for staging purposes (grade C).
- Equivocal extrauterine disease is to be considered for biopsy to confirm or rule out metastatic disease and to avoid inappropriate treatment. Tru-Cut (core-cut) biopsy is the preferred option than fine-needle aspiration biopsy because it allows histological assessment of the tissue.

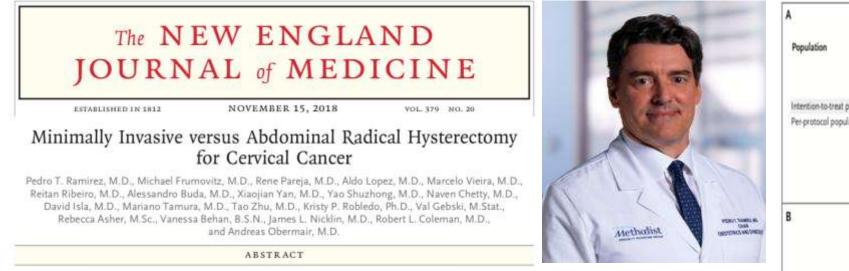
MANAGEMENT OF STAGE T1a

Diagnosis of Stage T1a Disease

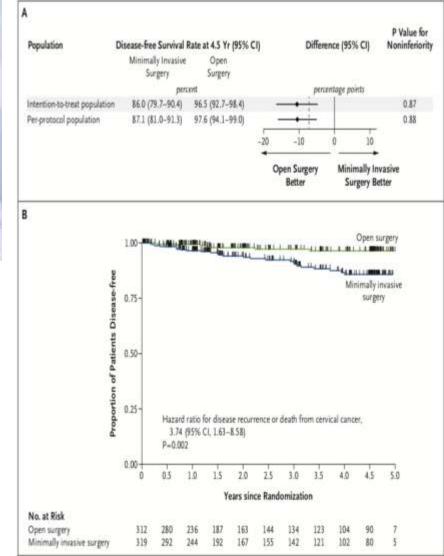
 Diagnosis of T1a cancer should be based on a conization (or excision) specimen examined by an expert pathologist. Management must be based on an expert pathology review, with accurate measurement of the maximum horizontal 2 dimensions, depth of invasion, margin status, coexisting

MANAGEMENT OF STAGES T1b1/T2a1

General Recommendation


 Treatment strategy should aim for the avoidance of combining radical surgery and radiotherapy because of the highest morbidity after combined treatment (grade B).

Negative Lymph Nodes on Radiological Staging—Surgical Treatment


- Radical surgery by a gynecologic oncologist is the preferred treatment modality. Minimally invasive approach is favored (grade B).
- The standard lymph node staging procedure is systematic pelvic lymphadenectomy. Sentinel node biopsy before pelvic lymphadenectomy is strongly recommended. Combination of blue dye with radiocolloid or use of indocyanine green alone is the recommended technique (grade B).

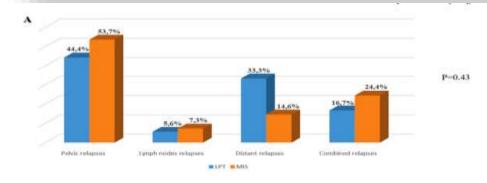
International Journal of Gynecological Cancer • Volume 28, Number 4, May 2018

The results showed that the 4.5-year disease-free survival rate was **86.0% with minimally invasive surgery** and **96.5% with open surgery**.

GYNECOLOGICAL CANCER Patterns of recurrence after laparoscopic versus open abdominal radical hysterectomy in patients with cervical cancer: a propensity-matched analysis

Patients recurring after Patients recurring after open abdominal radical laparoscopic radical Site of recurrence hysterectomy (n=70) hysterectomy (n=35) P value Vaginal vault 18 (25%) 6 (1796) 0.46 Pelvic lymph nodes 6 (8%) 2 (5%) 0.71 Pelvic cavity 24 (34%) 26 (74%) < 0.001 Extrapelvic lymph nodes 9 (13%) 7 (20%) 0.39 Carcinomatosis 1 (1.5%) 8 (17.96) 0.005 Abdominal 64 (9196) 29 (82%) 0.47 11 (15%) 7 (20%) 0.59 Distant/hematogenous dissemination

Giorgio Bogani,¹ Fabio Ghezzi,² Luis Chiva ^(D),³ Baldo Gisone,⁴ Ciro Pinelli,⁴ Andrea Dell'Acqua,¹ Jvan Casarin,⁴ Antonino Ditto,¹ Francesco Raspagliesi⁵


Data are expressed in number (%).

Conclusions Patients undergoing laparoscopic radical hysterectomy are at higher risk of developing intrapelvic recurrences and peritoneal carcinomatosis. Further evidence is needed in order to corroborate our findings.

> Eur J Surg Oncol. 2023 Nov;49(11):107047. doi: 10.1016/j.ejso.2023.107047. Epub 2023 Sep 10.

Patterns of recurrence in FIGO stage IB1-IB2 cervical cancer: Comparison between minimally invasive and abdominal radical hysterectomy

Giacomo Corrado ¹, Luigi Pedone Anchora ², Simone Bruni ³, Isabella Sperduti ⁴, Camilla Certelli ², Benito Chiofalo ³, Andrea Giannini ³, Ottavia D'Oria ⁵, Nicolò Bizzarri ², Francesco Legge ⁶, Francesco Cosentino ⁷, Luigi Carlo Turco ⁷, Enrico Vizza ³, Giovanni Scambia ⁸,

Conclusions

MIS, in FIGO stage IB1-IB2 cervical cancer, is not associated with different relapse patterns compared to ARH, nor with a higher risk of distance metastasis and finally, without significant difference in term of DFS and OS. More studies are needed to determine the factors that modify the site of relapse.

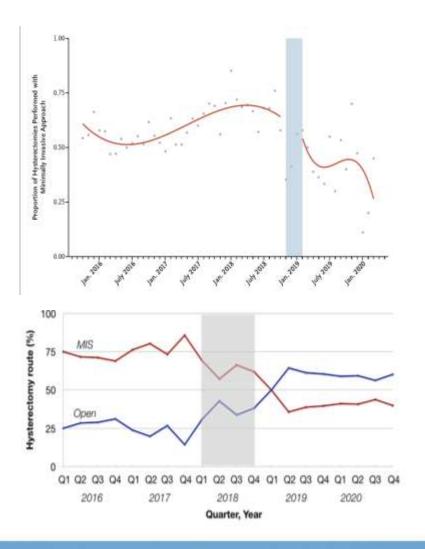
CERVICAL CANCER: SURGICAL ROUTE

GYNECOLOGIC ONCOLOGY

Practice patterns and 90-day treatment-related morbidity in early-stage cervical cancer

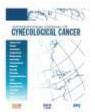
Giorgio Bogani^{a,*,1}, Violante Di Donato^{a,1}, Giovanni Scambia^b, Fabio Landoni^c, Fabio Ghezzi^d, Ludovico Muzii^a, Pierluigi Benedetti Panici^a, Francesco Raspagliesi^e, The investigator of the Italian Gynecological Cancer Study Group²

Conclusions


The present investigation highlighted that in referral centers the shift from minimally invasive to open radical hysterectomy does not influence 90-day surgery-related morbidity.

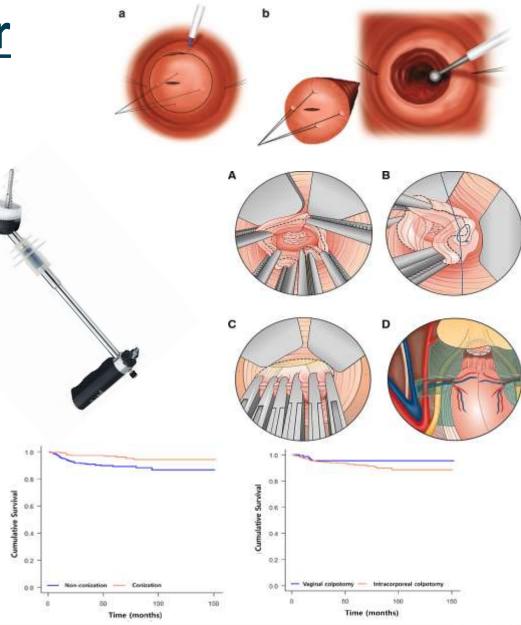
AJOG

Practice patterns and complications of hysterectomy for invasive cervical cancer after the Laparoscopic Approach to Cervical Cancer trial


Gabriella Schivardi, MD ^{a,b} · Jvan Casarin, MD ^{b,c} · Elizabeth B. Habermann, PhD ^d ·

Katherine A. Bews, MS^d · Carrie L. Langstraat, MD^b · William Cliby, MD^b · Giuseppe Cucinella, MD^b · Luigi A. De Vitis, MD^b · Pedro T. Ramirez, MD^f · Giovanni D. Aletti, MD^{a,e} · Andrea Mariani, MD, MS^b · Francesco Multinu, MD, MS^{a,b} Show less

The role of protective monover

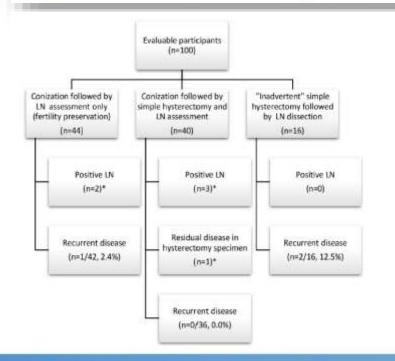


SUCCOR cone study: conization before radical hysterectomy

Enrique Chacon ¹, ¹Nabil Manzour ², ²Vanna Zanagnolo,³ Denis Querleu ³, ⁴ Jorge M Nüñez-Córdoba,⁵ Nerea Martin-Calvo,⁶ Mihai Ernil Căpilna,⁷ Anna Fagotti,⁸ Ali Kucukmetin,⁸ Constantijne Mom,¹⁶ Galina Chakalova,¹¹ Aliyev Sharnistan,¹⁷ Antonio Gil Moreno,^{15,14} Mario Malzoni,¹⁵ Fabrice Narducci,¹⁰ Octavio Arencibia,¹⁷ Francesco Raspagliesi,¹⁸ Taytun Toptas ⁹, ¹⁹ David Cibula,²⁰ Dilyara Kaidarova,²¹ Mehmet Muttu Meydanli ⁹,²² Mariana Tavarea,³⁰ Dmytro Golub,²⁴ Anna Myriam Perrone ¹⁰, ²⁵ Robert Poka ⁹,³⁰ Dimitrios Tsolakidis,²² Goran Vujić,³⁸ Marcin A Jedryka ¹⁰, ²⁹ Petra L M Zusterzeel,³⁰ Jogchum Jan Beltman,³¹ Frederic Goffin,³² Dimitrios Haidopoulos,³³ Herman Haller,³⁴ Robert Jach,³⁵ Iryna Yezhova,³⁶ Igor Berlev,³⁷ Margarida Bernardino,³⁰ Rasiah Bharathan,³⁹ Maximilian Lanner,⁴⁰ Minna M Maenpa,⁴¹ Vladyslav Sukhin ⁹,⁴² Jean-Guillaume Feron, ⁴³ Robert Fruscio ⁹, ^{44,45} Kersti Kukk,⁴⁶ Jordi Ponce,⁴¹ Jose Angel Minguez ¹⁰,⁴⁰ Daniel Vázquez-Vicente ⁹,⁴⁰ The SUCCOR study group

SUCCOR study: an international European cohort observational study comparing minimally invasive surgery versus open abdominal radical hysterectomy in patients with stage IB1 cervical cancer

Luis Chiva , Vanna Zanagnolo,² Denis Querleu,³ Nerea Martin-Calvo,⁴ Juan Arévalo-Serrano,⁶ Mihai Emil Căpilna,⁹ Anna Fagotti,⁷ Ali Kucukmetin,⁹ Constantijne Mom,⁹ Galina Chakalova,¹⁰ Shamistan Aliyev,¹¹ Mario Malzoni,¹² Fabrice Narducci , ¹⁰,¹⁰ Octavio Arencibia,¹⁴ Francesco Raspagliesi,¹⁵ Taytun Toptas,¹⁶ David Cibula,¹⁷ Dilyara Kaidarova,¹⁸ Mehmet Mutlu Meydanii , ¹⁰ Mariana Tavares,²⁰ Dmytro Golub,²¹ Anna Myriam Perrone , ²² Robert Poka,²⁵ Dimitrios Teolakidis,²⁴ Goran Vujić,²⁵ Marcin A Jedryka , ²⁶ Petra L M Zusterzeel,²⁷ Jogchum Jan Beltman,²⁴ Frederic Goffin,²⁸ Dimitrios Haidopoulos,³⁰ Herman Haller,³¹ Robert Jach,³² Iryna Yezhova,³³ Igor Berlev,³⁴ Margarida Bernardino,³⁶ Raslah Bharathan,³⁶ Maximilian Lanner,³⁷ Minna M Maenpaa,³⁶ Vladyslav Sukhin , ³⁹ Jean-Guillaume Feron,⁴⁶ Robert Fruscio,^{41,42} Kersti Kukk,⁴³ Jordi Ponce,⁴⁴ Jose Angel Minguez,⁴⁵ Daniel Vázquez-Vicente , ⁴⁶ Taresa Castellanos,⁴⁵ Enrique Chacon,⁴⁶ Juan Luis Alcazar , ⁴⁷ et al., On behalf of the SUCCOR



SURGICAL RADICALITY

ConCerv: a prospective trial of conservative surgery for low-risk early-stage cervical cancer

INTERINATIONAL IOCRENAL OF CYNECOLOGICAL CANCER

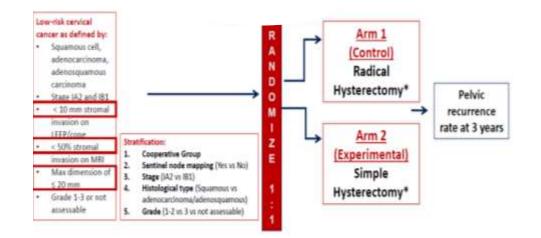
Kathleen M Schmeler ⁽¹⁾, ¹ Rene Pareja ⁽¹⁾, ² Aldo Lopez Blanco, ³ Jose Humberto Fregnani, ⁴ Andre Lopes, ⁵ Myriam Perrotta, ⁶ Audrey T Tsunoda, ⁷ David F Cantú-de-León, ⁸ Lois M Ramondetta, ¹ Tarinee Manchana, ⁹ David R Crotzer, ¹⁰ Orla M McNally, ¹¹ Martin Riege, ¹² Giovanni Scambia, ¹³ Juan Manuel Carvajal, ¹⁴ Julian Di Guilmi, ¹⁵ Gabriel J Rendon ⁽¹⁾, ¹⁶ Preetha Ramalingam, ¹⁷ Bryan M Fellman, ¹⁸ Robert L Coleman, ¹⁹ Michael Frumovitz ⁽¹⁾, ¹ Pedro T Ramirez¹

HIGHLIGHTS

- · Conservative surgery was associated with a 3.5% recurrence rate in women with low-risk cervical cancer.
- The rate of positive lymph nodes was 5%, with lymph node assessment recommended in this low-risk population.
- Further study is needed to determine long-term outcomes and optimal pathologic criteria for conservative surgery.

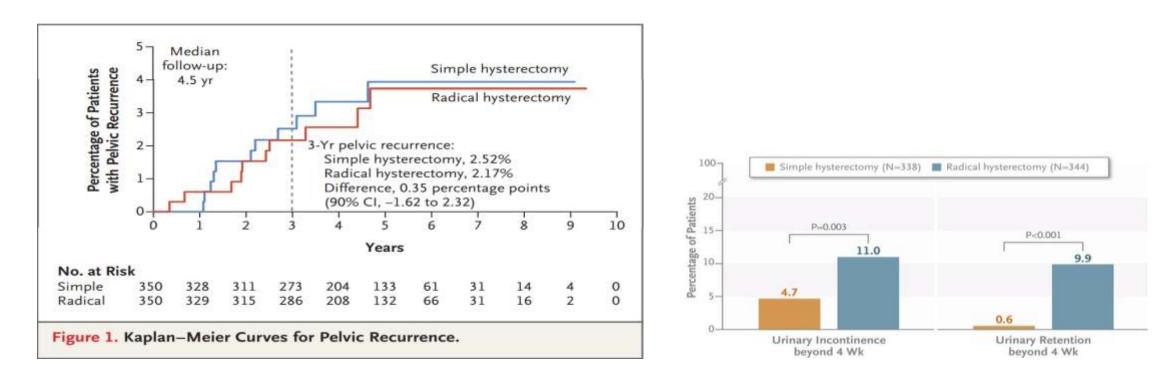
XXII ASSEMBLEA MaNGO | STANDARD TREATMENTS AND NEW DIRECTIONS IN GYNAECOLOGICAL CANCERS MILANO 26th-27th-28th June 2025

<2 cm


CERVICAL CANCER: LESS RADICAL SURGERY

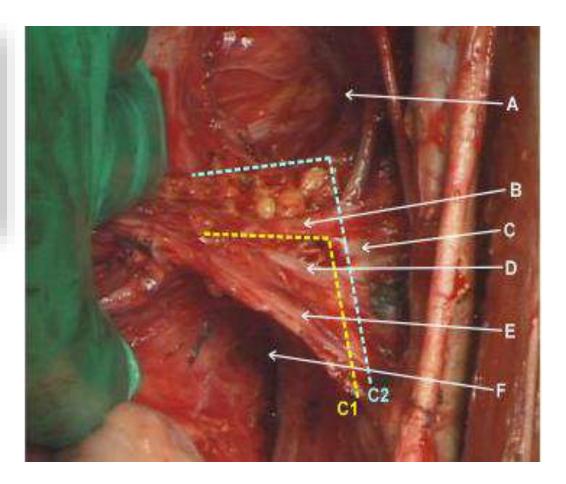
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

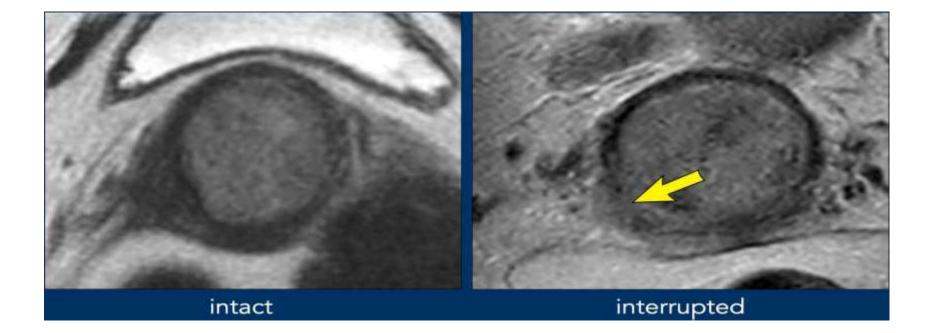

Simple versus Radical Hysterectomy in Women with Low-Risk Cervical Cancer

Marie Plante, M.D., Janice S. Kwon, M.D., Sarah Ferguson, M.D., Vanessa Samouëlian, M.D., Gwenael Ferron, M.D., Amandine Maulard, M.D., Cor de Kroon, M.D., Willemien Van Driel, M.D., John Tidy, M.D., Karin Williamson, M.D., Sven Mahner, M.D., Stefan Kommoss, M.D., Frederic Goffin, M.D., Karl Tamussino, M.D., Brynhildur Eyjólfsdóttir, M.D., Jae-Weon Kim, M.D., Noreen Gleeson, M.D., Lori Brotto, Ph.D., Dongsheng Tu, Ph.D., and Lois E. Shepherd, M.D., for the CX.5 SHAPE investigators*

SHAPE TRIAL – CONCLUSIONS



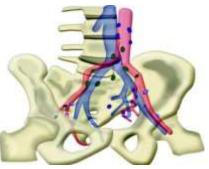
- In early-stage low-risk cervical cancer, pelvic recurrence rate at three years with simple hysterectomy was not inferior to radical hysterectomy.
- Fewer urological surgical complications following simple hysterectomy
- Better quality of life and sexual health measures were seen following simple hysterectomy



CERVICAL CANCER: TAILORED SURGERY

Risk Group	Tumor Size	LVSI		Type of Radical Hysterectomy*
Low risk	<2 cm	Negative	Inner 1/3	B1 (A)
Intermediate	≥2 cm	Negative	Any	B2 (C1)
risk	<2 cm	Positive	Any	
High risk	$\geq 2 \text{ cm}$	Positive	Any	C1 (C2)

HOW TO PREDICT THE NEED OF ADJUVANT THERAPY



NODAL STAGING

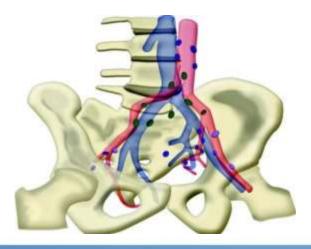
Sentinel lymph node mapping and intraoperative assessment in a prospective, international, multicentre, observational trial of patients with cervical cancer: The SENTIX trial

David Cibula & ¹ 🖾 • Roman Kocian ¹ • Andrea Plaikner • ... Daniela Fischerova ¹ • Kristyna Nemejcova · Christhardt Kohler • Show all authors • Show footnotes

Type of SLN involvement	SLN frozen section outcome (%)			
	Sensitivity	False negatives	NPV	
Macrometastases	72.4	27.6	97.8	
Micrometastases	9.5	90.5	94.7	
Isolated tumour cells	0	100	96.7	
Macrometastases + micrometastases	46.0	54.0	92.5	
Macrometastases + micrometastases + isolated tumour cells	37.1	62.9	89.2	

Intraoperative frozen section misses 54% of positive lymph nodes!

Lymphnode metastasis detection rate is doubled with sentinel technique with ultrastaging

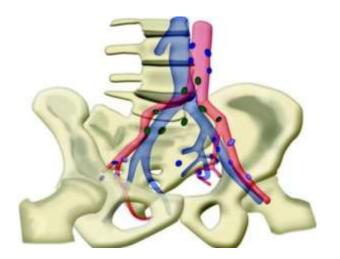


SENTICOL - 2

Senticol Prospective multicentre study FIGO IA1 LVSI + to IB1 SLN Biopsy + PLND/PALND

92.0% Sensitivity98.2% NPV

for node metastasis detection

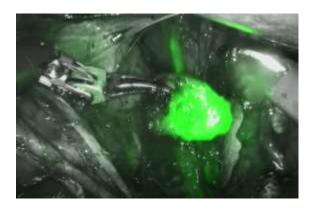


Senticol II RCT, Multicentre FIGO IA1 LVSI+, IB1, IB2, IIA1 SNL Biopsy alone vs SNL + PLND Lymphatic morbidity was significantly lower in the SN arm (31.4%) vs SN+ PLND arm (51.5%; p 0.0046). 3-year recurrence-free survival was not significantly different (92.0% in SN arm and 94.4% in SN + PLND arm).

Lécuru, Fabrice et al. *Journal of clinical oncology* vol. 29,13 (2011): 1686-91. doi:10.1200/JCO.2010.32.0432

Mathevet, Patrice et al" *European journal of cancer (Oxford, England : 1990)* vol. 148 (2021): 307-315. doi:10.1016/j.ejca.2021.02.009

FOCUS ON ONCOLOGICAL OUTCOMES


SENTICOL III: an international validation study of sentinel node biopsy in early cervical cancer. A GINECO, ENGOT, GCIG and multicenter study

Fabrice R Lecuru¹, Mary McCormack², Peter Hillemanns³, Amelie Anota⁴, Mario Leitao⁵, Patrice Mathevet⁶, Ronald Zweemer⁷, Keiichi Fujiwara⁸, Vanna Zanagnolo⁹, Ane Gerda Zahl Eriksson¹⁰, Emma Hudson¹¹, Gwenael Ferron¹² and Marie Plante¹³

Sentinel lymph node biopsy versus pelvic lymphadenectomy in early-stage cervical cancer: a multi-center randomized trial (PHENIX/CSEM 010)

Hua Tu^{#1}, He Huang^{#1}, Bingna Xian¹, Jibin Li², Ping Wang³, Weidong Zhao⁴,

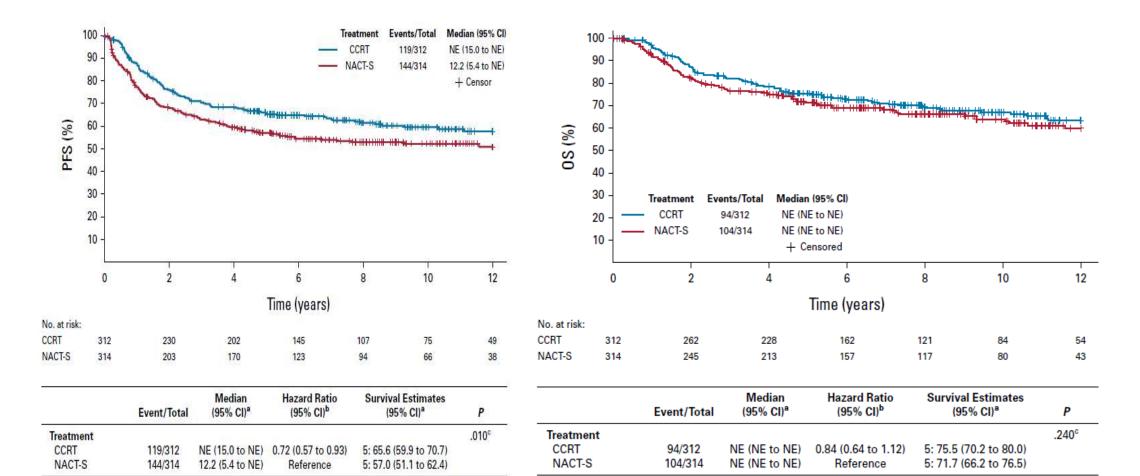
The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients with Cervical Cancer

David Cibula¹ • Richard Pötter² • François Planchamp³ • Elisabeth Avall-Lundqvist⁴ • Daniela Fischerova¹ • Christine Haie-Meder⁵ • Christhardt Köhler⁶ • Fabio Landoni⁷ • Sigurd Lax⁸ • Jacob Christian Lindegaard⁹ • Umesh Mahantshetty¹⁰ • Patrice Mathevet¹¹ • W. Glenn McCluggage¹² • Mary McCormack¹³ • Raj Naik¹⁴ • Remi Nout¹⁵ • Sandro Pignata¹⁶ • Jordi Ponce¹⁷ • Denis Querleu³ • Francesco Raspagliesi¹⁸ • Alexandros Rodolakis¹⁹ • Karl Tamussino²⁰ • Pauline Wimberger²¹ • Maria Rosaria Raspollini²²

2018

5.7.2 Stage T1b2/T2a2 and involved lymph nodes on radiological staging NOW IB3

A Definitive chemoradiotherapy and brachytherapy are recommended in patients with unequivocally involved PLNs on imaging (see Principles of radiotherapy).

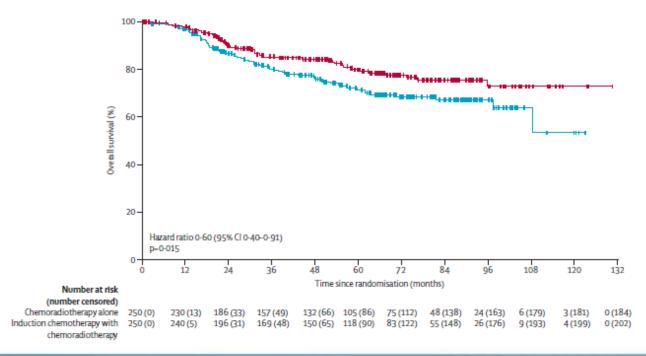

5.7.3 Stage T2b, T3a/b, T4a

A

Definitive platinum-based chemoradiotherapy and brachytherapy are recommended (see Principles of radiotherapy).

CERVICAL CANCER: EORTC-55994

Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer: Review of the Literature and Perspectives of Clinical Research


ANGIOLO GADDUCCI and STEFANIA COSIO

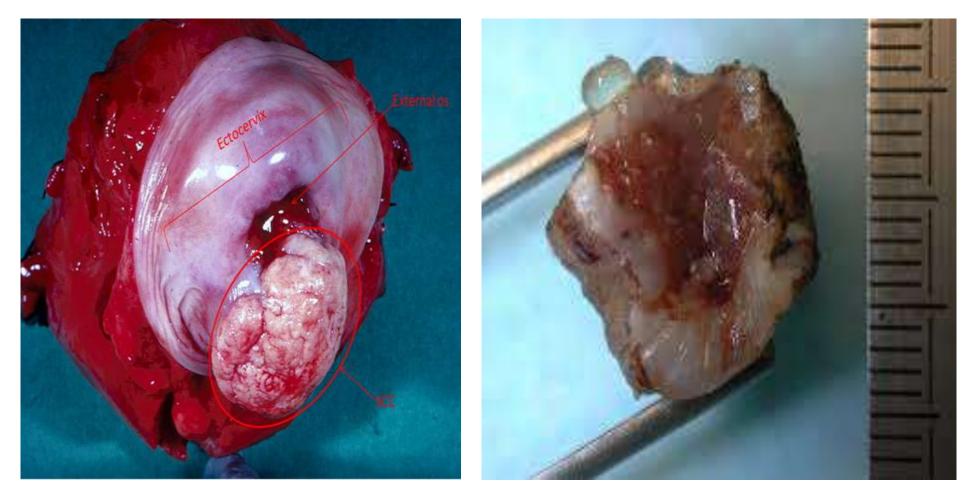
Authors	Stage	Histology	CT regimen	pts	DFS	OS
Sardi (22)	Ib>2 cm	SCC	CDDP + VCR + BLEO ^a	Ib ₁ 41	After 8 years of follow-up	OS: 82%
				Ib ₂ 61	After 9 years of follow-up	OS: 80%
Chang (23)	Ib2-IIa2	SCC, AD-ADS	$CDDP + VCR + BLEO^{b}$	68		5-y: 70%
Benedetti (24)	Ib-III	SCC	different platinum-based regimen ^c	210	5-y: 55.4%	5-y: 58.9%
Huang (25)	Ib2-IIa2	SCC, AD-ADS	$CDDP + VCR + BLEO^{d}$	162	5-y: 65%	5-y: 69%
Buda (26)	Ib2-IV	SCC	CDDP +PTX+IFO ^e	96	4-y: 71%	in Provident Contraction
			CDDP+IFO ^f	108	4-y: 65%	
Katzumata (27)	Ib2-IIb	SCC	BLEO + VCR + MIT-C + CDDPg	67	5-y: 59.9%	5-y: 70%
Chen (28)	Ib2-IIb	SCC, AD, ADS	$CDDP + MIT-C + 5-FU^{h}$	72		4-y: 71%
Lissoni (29)	Ib2-IVa	SCCA	$CDDP + PTX + IFO^{e}$	74	5-y: 71%	5-y: 78%
			$CDDP + PTX^{i}$	80	5-y: 64%	5-y: 72%
Angioli (30)	Ib2-IIb	SCC, AD-ADS	CDDP+PTX ¹	115	5-y: 61%	5-y: 77%
Shoji (31)	Ib2-IIIb	SCC	CDDP+CPT-11 ^m	42	5-y: 67.2%	5-y: 68%
Mori (32)	Ib2-IIb>4cm	SCC	Nedaplatin+CPT-11 ⁿ	32	5-y: 78.8	5-y: 89.7%

CERVICAL CANCER: CHEMO-RADIATION

Induction chemotherapy followed by standard chemoradiotherapy versus standard chemoradiotherapy alone in patients with locally advanced cervical cancer (GCIG INTERLACE): an international, multicentre, randomised phase 3 trial

	Induction chemotherapy with chemoradiotherapy (n=250)	
Cisplatin cycles completed		
Five cycles	169 (68%)	197 (79%)
At least four cycles*	212 (85%)	224 (90%)
Main reasons for fewer than five cycles		
Adverse events leading to discontinuation	68 (27%)	33 (13%)
Haematological	34	4
Non-haematological	20	25
Both	14	4
Other reasons not due to toxicity	13 (5%)	20 (8%)
Radiotherapy		
Received definitive EBRT on or off trial†	246 (98%)	239 (96%)
Received EBRT on trial	242 (97%)	231 (92%)
IMRT	102 (42%)	93 (40%)
3DCRT	140 (58%)	138 (60%)
Received extended field EBRT	22 (9%)	20 (9%)
Received brachytherapy	238 (98%)	224 (97%)
2D point A	46 (19%)	49 (22%)
3D point A	120 (50%)	107 (48%)
3D HRCTV D90	72 (30%)	68 (30%)
Did not receive brachytherapy on trial	4 (2%)	7 (3-0%)
Received EBRT boost	3 (1%)	6 (2-6%)
No boost	1(<1%)	1(<1%)
Did not receive EBRT on trial	8 (3%)	19 (8%)
Had radiotherapy outside trial	4 (50%)	8 (42%)
Ineligible or discontinued	1 (13%)	5 (26%)
No EBRT	1(13%)	1 (5%)
Unknown	2 (25%)	5 (26%)
Median overall treatment time, days	45 (36-70)	45 (37-88)
Median total EQD2, Gy (% ≥78 Gy)‡	79-4 (69-8)	80-0 (71-4)
Median total HRCTV D90 EQD2 (IGABT), Gy‡	86-6	86-8

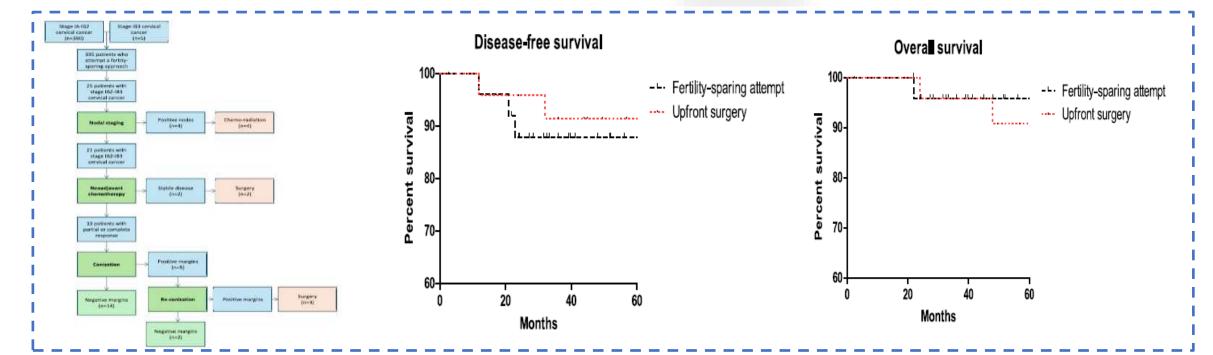
CERVICAL CANCER: ICI ERA

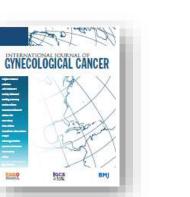

Immunotherapy in locally advanced cervix cancer: A critical appraisal of the FDA indication based on ENGOT-CX11/GOG-3047/KEYNOTE-A18

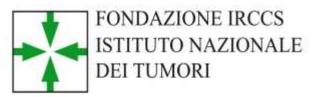
Neoadjuvant chemotherapy plus camrelizumab for locally advanced cervical cancer (NACI study): a multicentre, singlearm, phase 2 trial

Kezhen Li*, Jing Chen*, Yingjie Hu*, Yan-Zhou Wang*, Yuanming Shen*, Gang Chen*, Wenju Peng, Zixuan Fang, Bairong Xia, Xiaojun Chen, Kun Song, Yingmei Wang, Dongling Zou, Yan-Chun Wang, Yingyan Han, Xue Feng, Jing Yuan, Shuaiqingying Guo, Xiaolin Meng, Chenzhao Feng, Yin Chen, Jie Yang, Junpeng Fan, Jianliu Wang, Jihui Ai†, Ding Ma†, Chaoyang Sun†

CERVICAL CANCER: FERTILITY-SPARING






CERVICAL CANCER TREATMENT

Chemo-conization in Early-sTage cERvical caNcer > 2 cm scheduled for fertilltYsparing approach: an analysis of the ETERNITY project

Giorgio Bogani^{a,*}, Giovanni Scambia^{b,c}, Mario Malzoni^d, Jvan Casarin^e, Giuseppe Vizzielli^{f,g}, Frédéric Amant^h, Francesco Raspagliesi^a, the Investigators of the ETERNITY Project[†]

CERVICAL CANCER:

EARLY-STAGE CERVICAL CANCER FERTILITY-SPARING SURGERY MULTIDICIPLINARY APPROACH REFERRAL CENTERS

