

# CRITICITA' DELLE LINEE GUIDA ESGO NEL CARCINOMA DELL'ENDOMETRIO E DELLA CERVICE

Prof.ssa Federica Tomao







# Nomination of multidisciplinary international development group Identification of scientific evidence Formulation of guidelines External evaluation of guidelines (international review) Integration of international reviewers' comments

**Figure 1** Guideline development process.

#### **LEVELS OF EVIDENCE**

- Evidence from at least one large randomized, controlled trial of good methodological quality (low potential for bias) or meta-analyses of well-conducted, randomized trials without heterogeneity
- II Small randomized trials or large randomized trials with a suspicion of bias (lower methodological quality) or meta-analyses of such trials or of trials with demonstrated heterogeneity
- III Prospective cohort studies
- IV Retrospective cohort studies or case-control studies
- V Studies without control group, case reports, experts opinions

#### **GRADES OF RECOMMENDATIONS**

- A Strong evidence for efficacy with a substantial clinical benefit, strongly recommended
- Strong or moderate evidence for efficacy but with a limited clinical benefit, generally recommended
- Insufficient evidence for efficacy or benefit does not outweigh the risk or the disadvantages (adverse events, costs, ...), optional
- Moderate evidence against efficacy or for adverse outcome, generally not recommended
- E Strong evidence against efficacy or for adverse outcome, never recommended

Figure 2 Levels of evidence and grades of recommendations.

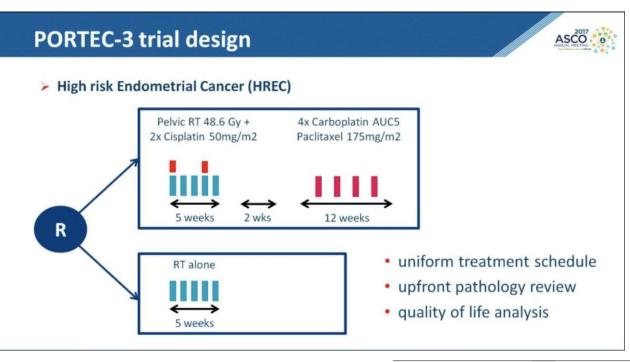
# **Endometrial cancer**





# **ESGO/ESTRO/ESP** guidelines for the management of patients with endometrial carcinoma

Table 2 Definition of prognostic risk groups


| Risk group             | Molecular classification unknown                                                                                                                                                                                                                                                             | Molecular classification known*†                                                                                                                                                                                                                                                                                                                   |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low                    | Stage IA endometrioid + low-grade‡ +<br>LVSI negative or focal                                                                                                                                                                                                                               | <ul> <li>Stage I-II <i>POLEmut</i> endometrial carcinoma, no residual disease</li> <li>Stage IA MMRd/NSMP endometrioid carcinoma + low-grade‡ + LVSI negative or foca</li> </ul>                                                                                                                                                                   |
| Intermediate           | <ul> <li>Stage IB endometrioid + low-grade‡ + LVSI negative or focal</li> <li>Stage IA endometrioid + high-grade‡ + LVSI negative or focal</li> <li>Stage IA non-endometrioid (serous, clear cell, undifferentiared carcinoma, carcinosarcoma, mixed) without myometrial invasion</li> </ul> | <ul> <li>Stage IB MMRd/NSMP endometrioid carcinoma + low-grade‡ + LVSI negative or focal</li> <li>Stage IA MMRd/NSMP endometrioid carcinoma + high-grade‡ + LVSI negative or focal</li> <li>Stage IA p53abn and/or non-endometrioid (serous, clear cell, undifferentiated carcinoma, carcinosarcoma, mixed) without myometrial invasion</li> </ul> |
| High–intermediate      | <ul> <li>Stage I endometrioid + substantial LVSI regardless of grade and depth of invasion</li> <li>Stage IB endometrioid high-grade‡ regardless of LVSI status</li> <li>Stage II</li> </ul>                                                                                                 | <ul> <li>Stage I MMRd/NSMP endometrioid carcinoma + substantial LVSI regardless of grade and depth of invasion</li> <li>Stage IB MMRd/NSMP endometrioid carcinoma high-grade‡ regardless of LVSI status</li> <li>Stage II MMRd/NSMP endometrioid carcinoma</li> </ul>                                                                              |
| High                   | <ul> <li>Stage III–IVA with no residual disease</li> <li>Stage I–IVA non-endometrioid (serous, clear cell, undifferentiated carcinoma, carcinosarcoma, mixed) with myometrial invasion, and with no residual disease</li> </ul>                                                              | <ul> <li>Stage III–IVA MMRd/NSMP endometrioid carcinoma with no residual disease</li> <li>Stage I–IVA p53abn endometrial carcinoma with myometrial invasion, with no residual disease</li> <li>Stage I–IVA NSMP/MMRd serous, undifferentiated carcinoma, carcinosarcoma with myometrial invasion, with no residual disease</li> </ul>              |
| Advanced<br>metastatic | <ul><li>Stage III–IVA with residual disease</li><li>Stage IVB</li></ul>                                                                                                                                                                                                                      | <ul> <li>Stage III–IVA with residual disease of any molecular type</li> <li>Stage IVB of any molecular type</li> </ul>                                                                                                                                                                                                                             |

- ➤ No adj th
- ➤ When molecular classification available: I-II stage POLE mutated tumors no adj th
- > Adj BT can be recommended to decrease local recurrence
- > Omission of adj BT can be considered
- ➤ When molecular classification available: POLE and P53 mutated tumors have specific recommendations (P53 abn tumors restricted to a polyp or without myometrial is present on polyp orwithout myometrial invasion, adj th is generally not recommended)
- > Adj BT can be recommended to decrease local recurrence
- > EBRT can be considered for substantial LVSI and for stage II
- Adj CT can be considere, especially for high grade and/or substantial LVSI
- > Omission of any adj th is an option
- ➤ When mol class avail: POLE and P53 mutated tumors have specific recomm
- > EBRT with concurrent and adj CT or with seq CT and RT
- > CT alone is an alternative option
- ➤ When mol class avail: POLE and P53 mutated tumors have specific recomm

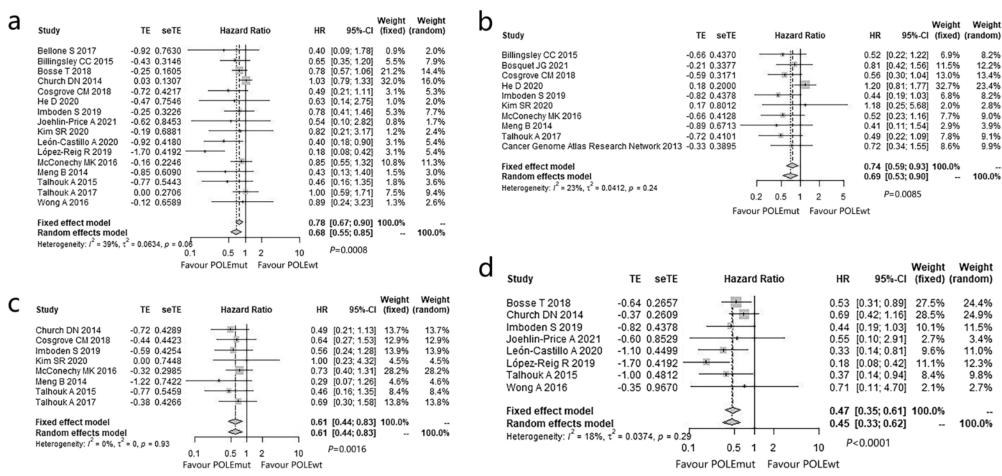
Concin N, et al. IJGC 2021

## Mostly debated

**POLE** gene mutation in EC is observed EC in 7-12%



#### Post-hoc analysis



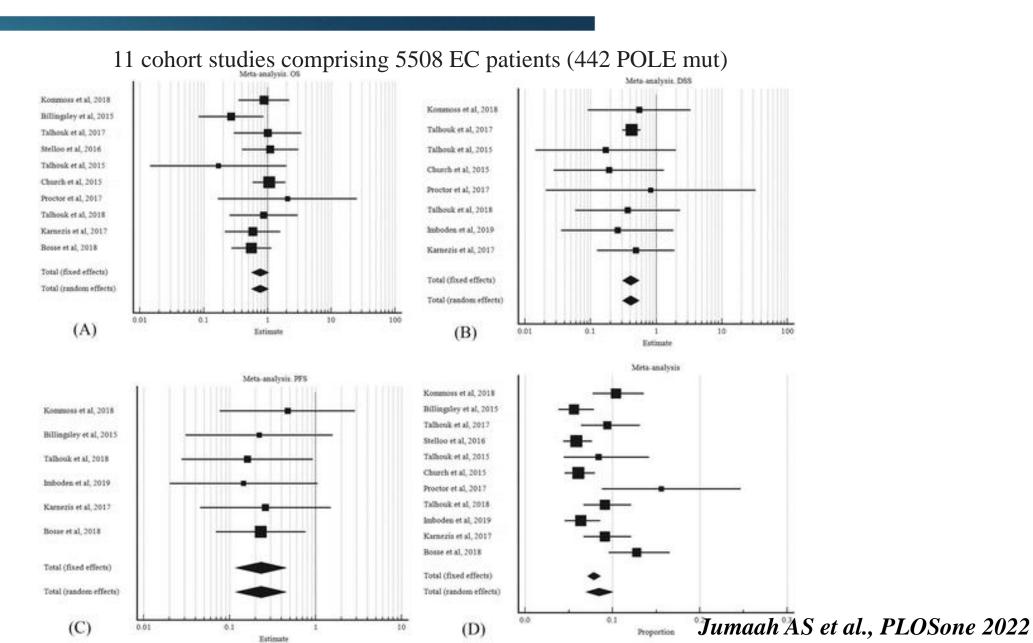

#### **POLE**mut

- ➤ POLEmut endometrioid carcinoma had an excellent outcome in both arms.
- ► However, both trial arms included EBRT.
- Prospective registration preferably in national or international studies) of POLEmut endometrial carcinoma cases with treatment and outcome data is strongly recommended.

| Stage |            |           |           |           |           | < .001 |
|-------|------------|-----------|-----------|-----------|-----------|--------|
| IA    | 54 (13.2)  | 23 (24.7) | 12 (23.5) | 13 (9.5)  | 6 (4.7)   |        |
| IB    | 73 (17.8)  | 14 (15.1) | 20 (39.2) | 26 (19.0) | 13 (10.1) |        |
| II    | 105 (25.6) | 24 (25.8) | 7 (13.7)  | 33 (24.1) | 41 (31.8) |        |
| IIIA  | 46 (11.2)  | 8 (8.6)   | 2 (3.9)   | 10 (7.3)  | 26 (20.2) |        |
| IIIB  | 29 (7.1)   | 4 (4.3)   | 4 (7.8)   | 13 (9.5)  | 8 (6.2)   |        |
| IIIC  | 103 (25.1) | 20 (21.5) | 6 (11.8)  | 42 (30.7) | 35 (27.1) |        |

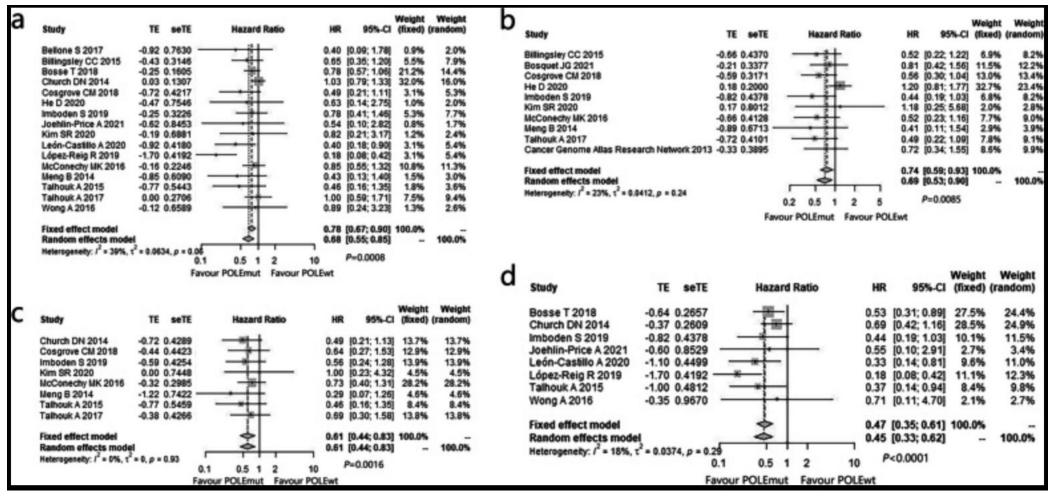
# Evaluation of Treatment Effects in Patients With Endometrial Cancer and *POLE* Mutations: An Individual Patient Data Meta-Analysis




**Fig. 3** Forest plot of the meta-analysis estimating the hazard ratio (HR) with 95% confidence interval (CI) of **a** overall survival (OS), **b** progression free survival (PFS), **c** disease specific survival (DSS), and **d** relapse free survival (RFS) for POLEmut compared with POLE-wild-type (POLEwt) EC patients

# Evaluation of Treatment Effects in Patients With Endometrial Cancer and *POLE* Mutations: An Individual Patient Data Meta-Analysis

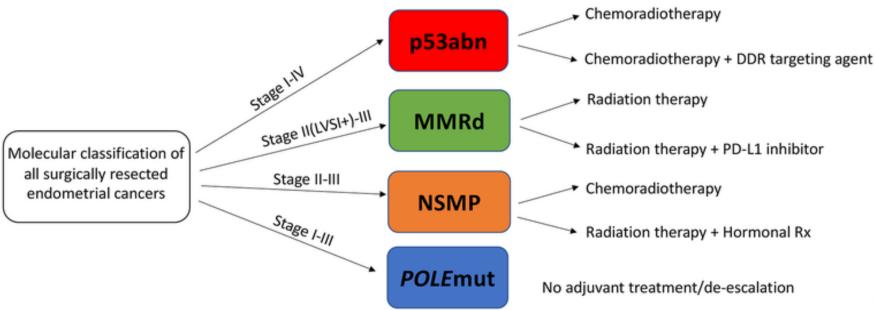
**TABLE 1.** Clinicopathological Characteristics, Treatments, and Outcomes for *POLE* Pathogenic and Nonpathogenic/Variant of Uncertain Significance Endometrial Cancers


| Variable                    | Total (n = 359)   | Pathogenic (n = 294) | Nonpathogenic (n = 65) | P    |
|-----------------------------|-------------------|----------------------|------------------------|------|
| Age, y <sup>a</sup>         |                   |                      |                        | .002 |
| Median (range)              | 58.0 (31.0-92.6)  | 57.0 (31.0-92.6)     | 64.0 (35.0-82.3)       |      |
| BMI, kg/m <sup>2</sup>      |                   | _ `                  |                        | .359 |
| Median (range)              | 27.3 (17.4-213.5) | 27.1 (18.0-54.2)     | 28.3 (17.4-213.5)      |      |
| Missing                     | 104               | 95                   | 9                      |      |
| Stage, No. (%) <sup>a</sup> |                   |                      |                        | .095 |
| IA                          | 193 (53.8)        | 165 (56.1)           | 28 (43.1)              |      |
| IB                          | 101 (28.1)        | 81 (27.6)            | 20 (30.8)              |      |
| II                          | 22 (6.1)          | 19 (6.5)             | 3 (4.6)                |      |
| IIIA                        | 16 (4.5)          | 10 (3.4)             | 6 (9.2)                |      |
| IIIB                        | 5 (1.4)           | 3 (1.0)              | 2 (3.1)                |      |
| IIIC                        | 15 (4.2)          | 12 (4.1)             | 3 (4.6)                |      |
| IV                          | 7 (1.9)           | 4 (1.4)              | 3 (4.6)                |      |

### POLE mutations and survival analysis meta-analysis.



The clinicopathological characteristics of POLE-mutated/ultramutated endometrial carcinoma and prognostic value of POLE status: a meta-analysis based on 49 articles incorporating 12,120 patients


**POLE 8%** 



## More data...



## TransPORTEC RAINBO Umbrella Trial



**POLE**mut Sottostudio A: RAINBO BLUE Istotipi Endometrioide, sieroso, cellule chiare, in-RAINBO /dedifferenziato, carcinosarcoma, misto Gruppo A1.1 Osservazione Gruppo A1.2 France Osservazione RAINBO Gruppo A1.3 Osservazione DGOG Gruppo A2.1\* RAINBO Osservazione NCRI Gruppo A2.2\* RAINBO Radioterapia adiuvante +/brachiterapia vaginale in accordo con la pratica clinica dell'istituzione. Non chemioterapia Canada

DDR- DNA damage response

PD-L1 inhibitor- immune checkpoint blockade therapy

## Molecular categories attribution

| POLE | MMR   | p53          | MOLECULAR SUBTYPE          |
|------|-------|--------------|----------------------------|
| mut  | MMR-p | normal       | POLE                       |
| wt   | MMR-d | normal MMR-d |                            |
| wt   | MMR-p | normal       | NSMP/p53wt                 |
| wt   | MMR-p | abn          | p53abn                     |
| mut  | MMR-d | normal       | double classifier → POLE   |
| mut  | MMR-p | abn          | double classifier → POLE   |
| wt   | MMR-d | abn          | double classifier → MMR-d  |
| mut  | MMR-d | abn          | multiple classifier → POLE |

Stelloo et al, Gyn Onc 2014; Talhouket al, Gyn Onc 2016; Kommoss, McAlpine, Talhouk Annals Onc 2018; Abdulfatahet al, Gyn Onc 2019; Leon-Castillo al, J Path 2019

### Pathological classification doesn't really matter?

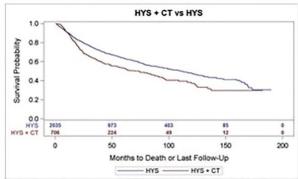
Gynecologic Oncology 148 (2018) 147-153

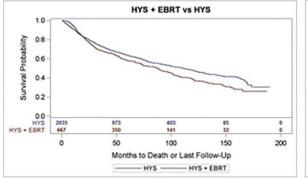


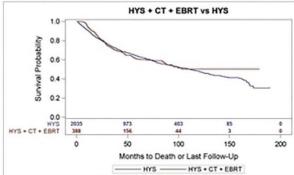
Contents lists available at ScienceDirect

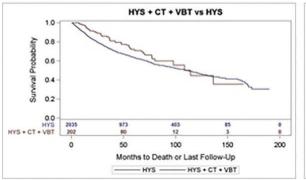
#### **Gynecologic Oncology**

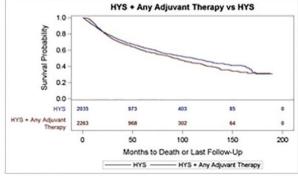

journal homepage: www.elsevier.com/locate/ygyno


Adjuvant therapy in patients with clear cell endometrial carcinoma: An analysis of the National Cancer Database\*


Karina Nieto <sup>a</sup>, William Adams <sup>b</sup>, Nghia Pham <sup>c</sup>, Alec M. Block <sup>e</sup>, Surbhi Grover <sup>d</sup>, William Small Jr <sup>e</sup>, Matthew M. Harkenrider <sup>e,\*</sup>


4298 patients treated from 1998 to 2011 with Stage I–IVA CCC were identified within the National Cancer Database.



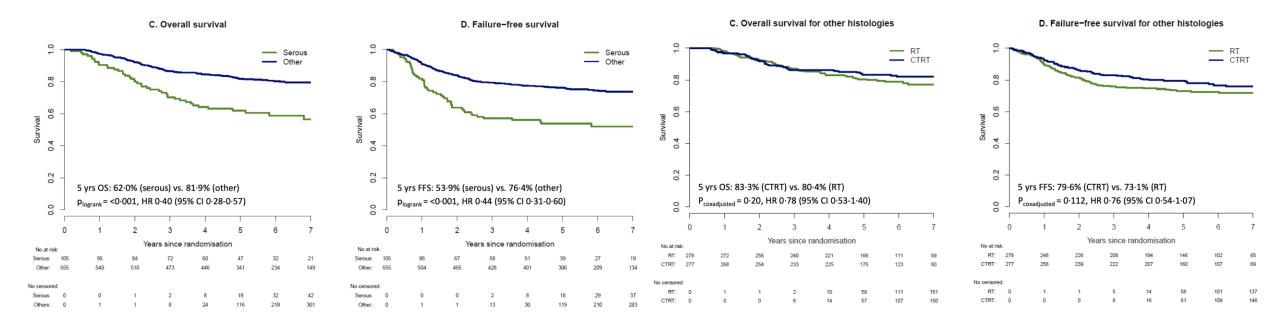














# Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial

oa OPEN ACCESS

Stephanie M de Boer, Melanie E Powell, Linda Mileshkin, Dionyssios Katsaros, Paul Bessette, Christine Haie-Meder, Petronella B Ottevanger, Jonathan A Ledermann, Pearly Khaw, Romerai D'Amico, Anthony Fyles, Marie-Helene Baron, Ina M Jürgenliemk-Schulz, Henry C Kitchener, Hans W Nijman, Godfrey Wilson, Susan Brooks, Sergio Gribaudo, Diane Provencher, Chantal Hanzen, Roy F Kruitwagen, Vincent T H B M Smit, Naveena Singh, Viet Do, Andrea Lissoni, Remi A Nout, Amanda Feeney, Karen W Verhoeven-Adema, Hein Putter, Carien L Creutzberg, on behalf of the PORTEC Study Group\*



686 women were enrolled, of whom 660 were eligible and evaluable

### With data in other tumors being controversial!!!!

## Radiotherapy and Renal Cell Carcinoma: A Continuing Saga

DESPOINA SPYROPOULOU, PANAGIOTIS TSIGANOS, FOTEINOS-IOANNIS DIMITRAKOPOULOS, MARIA TOLIA, ANGELOS KOUTRAS, DIMITRIS VELISSARIS, MARIA LAGADINOU, NIKOLAOS PAPATHANASIOU, ARETI GKANTAIFI, HARALABOS KALOFONOS and DIMITRIOS KARDAMAKIS

In Vivo May 2021, 35 (3) 1365-1377; DOI: https://doi.org/10.21873/invivo.12389

# Radiation Therapy for Recurrent Clear-Cell Cancer of the Ovary

Gina L Westhoff <sup>1</sup>, Katherine C Fuh, Terry A Longacre, Jennifer Leah McNally, I-Chow Hsu, Daniel S Kapp, Nelson Teng, Lee-May Chen

Affiliations + expand

PMID: 27575628 DOI: 10.1097/IGC.000000000000810

# **ESGO-ESTRO-ESP** guidelines





al LVSId

gical types with

#### TABLE 1 2023 FIGO staging of cancer of the endometrium. a,b

without cervical invasion, and regardless of the degree of LVSI or histological type

| Stage   | Description                                                                                                                                                                                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stage I | Confined to the uterine corpus and ovary <sup>c</sup>                                                                                                                                                                                |
| IA      | Disease limited to the endometrium OR non-aggressive histological type, i.e. low-grade endometroid, with invasion of less than half of myometrium with no or focal lymphovascular space involvement (LVSI) OR good prognosis disease |
|         | IA1 Non-aggressive histological type limited to an endometrial polyp OR confined to the endometrium                                                                                                                                  |
|         | IA2 Non-aggressive histological types involving less than half of the myometrium with no or focal IVSI                                                                                                                               |

## A new FIGO staging

TABLE 2 FIGO endometrial cancer stage with molecular classification.<sup>a</sup>

Stage designation

Molecular findings in patients with early endometrial cancer (Stages I and II after surgical staging)

POLEmut endometrial carcinoma, confined to the uterine corpus or with cervical extension, regardless of the degree of LVSI or histological type

Stage IICm<sub>p53abp</sub>

p53abn endometrial carcinoma confined to the uterine corpus with any myometrial invasion, with or


on 20<sup>th</sup> June!!!

clas



| Stage III | Local and/or regional spread of the tumor of any histological subtype                                                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IIIA      | Invasion of uterine serosa, adnexa, or both by direct extension or metastasis                                                                                                                                                                                     |
|           | IIIA1 Spread to ovary or fallopian tube (except when meeting stage IA3 criteria) <sup>c</sup> IIIA2 Involvement of uterine subserosa or spread through the uterine serosa                                                                                         |
| IIIB      | Metastasis or direct spread to the vagina and/or to the parametria or pelvic peritoneum                                                                                                                                                                           |
|           | IIIB1 Metastasis or direct spread to the vagina and/or the parametria IIIB2 Metastasis to the pelvic peritoneum                                                                                                                                                   |
| IIIC      | Metastasis to the pelvic or para-aortic lymph nodes or both <sup>f</sup>                                                                                                                                                                                          |
|           | IIIC1 Metastasis to the pelvic lymph nodes IIIC1i Micrometastasis IIICii Macrometastasis IIIC2 Metastasis to para-aortic lymph nodes up to the renal vessels, with or without metastasis to the pelvic lymph nodes IIIC2i Micrometastasis IIIC2ii Macrometastasis |
| Stage IV  | Spread to the bladder mucosa and/or intestinal mucosa and/or distance metastasis                                                                                                                                                                                  |
| IVA       | Invasion of the bladder mucosa and/or the intestinal/bowel mucosa                                                                                                                                                                                                 |
| IVB       | Abdominal peritoneal metastasis beyond the pelvis                                                                                                                                                                                                                 |
| IVC       | Distant metastasis, including metastasis to any extra- or intra-abdominal lymph nodes above the renal vessels, lungs, liver, brain, or bone                                                                                                                       |

#### **Original research**



# ESGO/ESHRE/ESGE Guidelines for the fertility-sparing treatment of patients with endometrial carcinoma



Alexandros Rodolakis , <sup>1</sup> Giovanni Scambia , <sup>2</sup> François Planchamp , <sup>3</sup> Maribel Acien , <sup>4</sup> Attilio Di Spiezio Sardo, <sup>5</sup> Martin Farrugia, <sup>6</sup> Michael Grynberg, <sup>7,8,9</sup> Maja Pakiz , <sup>10</sup> Kitty Pavlakis, <sup>11,12</sup> Nathalie Vermeulen, <sup>13</sup> Gianfranco Zannoni , <sup>14</sup> Ignacio Zapardiel , <sup>15</sup> Kirsten Louise Tryde Macklon <sup>16</sup>

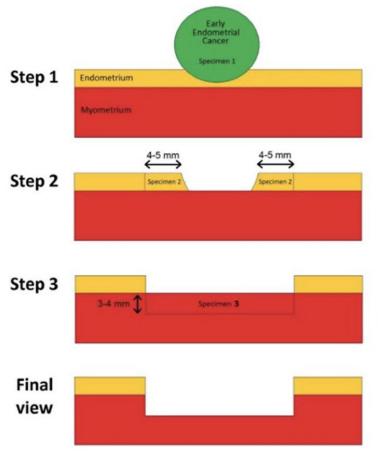
#### Differentiation of the Tumor

- ► Fertility-sparing treatment is considered for endometrioid patients with endometrial carcinoma with grade 1, stage IA without myometrial invasion and without risk factors (Level of evidence V, grade A).
- Evidence for grade 2 endometrioid endometrial carcinoma is limited. Therefore fertility-sparing treatment should be discussed on a case-by-case basis (Level of evidence IV, grade C).

#### Health Status, Obesity

► Following fertility-sparing therapy for endometrial carcinoma, weight loss in overweight and obese women or maintaining a healthy BMI is important for improving the chances of pregnancy (natural or after assisted reproductive technologies) and live birth. Therefore, weight loss in overweight and obese women or maintaining a healthy BMI after fertility-sparing treatment is strongly suggested as soon as possible (Level of evidence II, grade A).

Review of Initial Pathology by an Experienced Histopathologist


► A request for a second opinion by an experienced histopathologist is recommended if fertility-sparing treatment is considered (Level of evidence III, grade A).

#### Review of Initial Pathology by an Experienced Histopathologist

- ► A request for a second opinion by an experienced histopathologist is recommended if fertility-sparing treatment is considered (Level of evidence III, grade A).
- A combined approach consisting of hysteroscopic tumor resection, followed by oral progestins and/or levonorgestrelintra-uterine device, is the most effective fertility-sparing treatment both for complete response rate and live birth rate compared with other treatment options (Level of evidence II, grade B).

#### **Dose of Progestins**

- Orally administered megestrol acetate at a dose of 160–320 mg/ day or medroxyprogesterone acetate at a dose of 400–600 mg/ day is recommended (Level of evidence III, grade B).
- ► A levonorgestrel-intra-uterine device at a dose of 52 mg, alone or in combination with oral progestins, is a safe and effective approach (Level of evidence III, grade B).



#### **Duration of Treatment**

- ► The recommended duration of therapy is 6–12 months, within which a complete response should be achieved (Level of evidence III, grade B).
- ► The maximum time to achieve complete response should not exceed 15 months (Level of evidence IV, grade C).
- ► In the absence of any kind of response at 6 months, multidisciplinary counseling is recommended for adapting the management on a case-by-case basis (Level of evidence IV, grade B).

## **Based on these evidences**

**Table 1.** Oncological and Reproductive outcomes of fertility-sparing treatment of endometrial cancer.

| First Author and Year | N. of<br>Patient | Histology        | Type of Treatment       | Complete<br>Response Rate | Recurrence<br>Rate | Pregnancy<br>Rate        | Live Birth<br>Rate       |
|-----------------------|------------------|------------------|-------------------------|---------------------------|--------------------|--------------------------|--------------------------|
| Ramirez 2004          | 81               | EEC              | OP                      | 76%                       | 24%                | N.A.                     | N.A.                     |
| Calles 2012           | EEO              | 408 EEC          | NT A                    | 76.2%                     | 40.6%              | N.A.                     | 28%                      |
| Gallos 2012           | 559              | 151 AEH          | N.A.                    | 85.6%                     | 26%                | N.A.                     | 26.3%                    |
| Falcone 2017          | 28               | EEC              | HR + OP/HR +<br>LNG-IUS | 96.3%                     | 7.7%               | 93.3% <sup>1</sup>       | 86.6% <sup>1</sup>       |
|                       |                  |                  | HR + OP                 | 95.3%                     | 14.1%              | 47.8%                    | N.A                      |
| Fan 2017              | 619              | EEC              | OP                      | 76.3%                     | 30.7%              | 52.1%                    | N.A.                     |
|                       |                  |                  | LNG-IUS                 | 72.9%                     | 11%                | 56%                      | N.A.                     |
|                       |                  |                  | OP                      | 71%                       | 20%                | 34%                      | 20%                      |
| Wei 2017              | 1038             | EEC/AEH          | LNG-IUS                 | 76%                       | 9%                 | 18%                      | 14%                      |
|                       |                  |                  | OP + LNG-IUS            | 87%                       | N.A.               | 40%                      | 35%                      |
| Giampaolino<br>2018   | 69               | 14 EEC<br>55 AEH | HR + LNG-IUS            | 78.6%<br>92.7%            | 18.2%<br>3.9%      | 0%<br>26.3% <sup>1</sup> | 0%<br>26.3% <sup>1</sup> |

## NEW EC GUIDELINES ARE EXPECTED WITHIN THE END OF 2024.

Integrating new data about the immunotherapy New fertility sparing indications Updated FIGO staging

# **Cervical cancer**



### FIRST CRITICISM: the STRUCTURE!!!

#### Comparing to the 2018 version the structure is similar, however...

#### **ESGO EC guidelines**

#### MOLECULAR MARKERS FOR ENDOMETRIAL CARCINOMA DIAGNOSIS AND AS DETERMINANTS FOR TREATMENT DECISIONS

Different types of endometrial carcinoma have specific histological and molecular features, precursor lesions and natural histories. Conventional pathologic analysis remains an important tool for tumor stratification, but suffers from inter-observer variation. Different groups have applied a diagnostic algorithm using three immunohistochemical markers (p53, MSH6 and PMS2) and one molecular test (mutation analysis of the exonuclease domain of POLE) to identify prognostic groups analogous to the TCGA molecular-based classification. The feasibility of this approach was confirmed by a large number of publications that have all consistently reported prognostic relevance particularly in high-grade and high-risk tumors in several independent cohorts and prospective clinical trials. To apply this molecular classification, all these diagnostic tests need to be performed. Performing one of the surrogate marker tests in isolation is insufficient, as a combination of positive tests can occur in approximatively 5% of

#### Joint statement

There is still room for other biomarkers that may be potentially useful in the big group of low-grade endometrioid carcinoma with NSMP, such as L1CAM expression or mutations in *CTNNB1*.<sup>29–32</sup>

#### Recommendations

- Molecular classification is encouraged in all endometrial carcinomas, especially high-grade tumors (IV, B).
- ► POLE mutation analysis may be omitted in low-risk and intermediate-risk endometrial carcinoma with low-grade histology (IV, C).

### DEFINITION OF PROGNOSTIC RISK GROUPS INTEGRATING MOLECULAR MARKERS

There is overwhelming evidence that traditional pathologic features, such as histopathologic type, grade, myometrial invasion, and lymphovascular space invasion (LVSI), are important in assessing prognosis, as recommended in the ISGyP guidelines. Histopathologic typing should be performed according to the WHO Classification of Tumors (5th edition). A binary International Federation of Gynecology and Obstetrics (FIGO) grading is recommended, which

#### **ESGO CC guidelines**

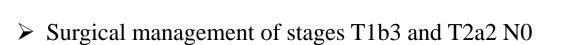
positive patients. Sentinel lymph node biopsy (without additional pelvic lymph node dissection) is an acceptable method of lymph node staging (grade B).

- Conization can be considered a definitive treatment as hysterectomy does not improve the outcome (grade C).
- Radical surgical approaches such as radical hysterectomy or parametrectomy represent overtreatment for patients with T1a1 disease (grade C).

#### Management of stage T1a2 disease

- In patients with stage T1a2 disease, conization alone or simple hysterectomy is an adequate treatment (grade C).
- Parametrial resection is not indicated (grade C).
- Lymph node staging can be considered in LVSI-negative patients but should be performed in LVSI-positive patients. Sentinel lymph node biopsy alone (without additional pelvic lymph node dissection) appears to be an acceptable method of LN staging (grade B).
- Routine completion of hysterectomy is not recommended after conservative management of stage T1a disease.

be recommended outside prospective clinical trials. Systematic lymph node dissection should include the removal of lymphatic tissue from regions with the most frequent occurrence of positive lymph nodes (sentinel nodes) including obturator fossa, external iliac regions, common iliac regions bilaterally, and presacral region. Distal external iliac lymph nodes (so-called circumflex iliac lymph nodes) should be spared if they are not macroscopically suspicious.


- The type of radical hysterectomy (extent of parametrial resection, type A-C2) should be based on the presence of prognostic risk factors identified preoperatively (Table 3). Major prognostic factors for oncological outcome as tumor size, maximum stromal invasion, and LVSI are used to categorize patients at high, intermediate, and low risk of treatment failure. Complete description of the template used for radical hysterectomy should be present in the surgical report. The 2017 modification of the Querleu-Morrow classification is recommended as a tool (Table 4).
- Ovarian preservation should be offered to premenopausal patients with squamous cell carcinoma and usual-type

Discussion of literature data-----Statements

Only statements





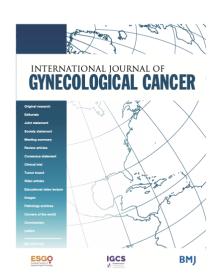


- ➤ Quality of life & palliative care
- > Rare tumors

**UPDATED** 

**NEW TOPIC** 

**NEW TOPIC** 



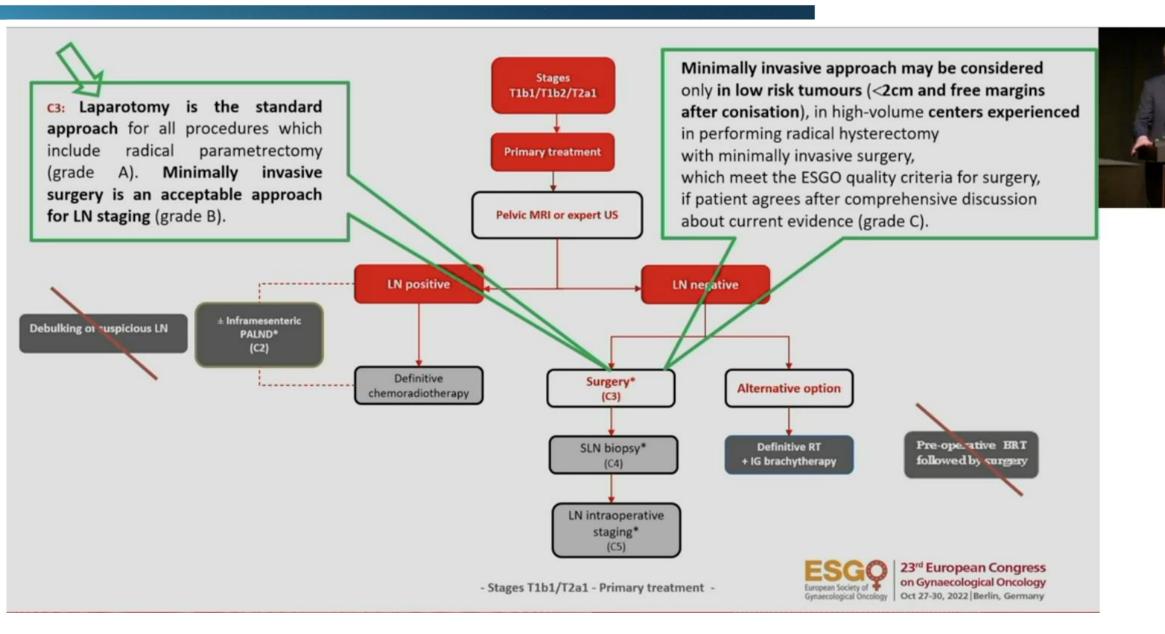



# ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer

| ····ariag                                                                                                                                                                                   | Cilibilit of pationics                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                    |             |                                             |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|-------------|---------------------------------------------|-------------------|
| Pub Med <sup>®</sup>                                                                                                                                                                        | Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                    |             | Search<br>User Guide                        | EGGO CC GUIDEUNES |
| Search results                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Save                                                             | Email                                              | Send to     | Display options 🗱                           |                   |
|                                                                                                                                                                                             | cer. 2023 May 1;33(5):667-668. doi: 10.1136/ijq                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  | 04523.                                             | FULL<br>BM) | TEXT LINKS  Full Text                       | nvenie surpery    |
| cancer                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                    | ACTI        | ONS                                         |                   |
| Oncology/Europe Oncology/Europe the Manageme  David Cibula, MD,* Richard Pött Daniela Fischerova, MD,* Christ Sigurd Lax, MD,** Jaco Patrice Mathevet, MD,§§ W. Gle Remi Nout, MD,*** Sandr | pean Society of Gynaecology opean Society for Radiother an Society of Pathology Gent of Patients With Cervice of Patients Managery of Pignata, MD,†† Umesh Mahandro Pignata, MD,†† Jordi Ponce, MD,‡‡‡ Denis of Pignata, MD,††† Jordi Ponce, MD,‡‡‡ Denis of Pignata, MD,††† Jordi Ponce, MD,‡‡‡ Denis of Pignata, MD,††† Maria Rosaria Raspollini, MD | rapy a uideling al Car Avall-Lund Fabio Land Shetty, MI Ouerland | nes for<br>ncer<br>dqvist, ME<br>ndoni, ME<br>0,‡‡ | 2, 8        | GAIDDU<br>NACT<br>HIPV released<br>Squemous | tcd               |

#### **Editorial**




# ESGO/ESTRO/ESP updated guidelines in cervical cancer

Pedro T Ramirez



### MINIMALLY INVASIVE SURGERY

D. Cibula



# The NEW ENGLAND JOURNAL of MEDICINE

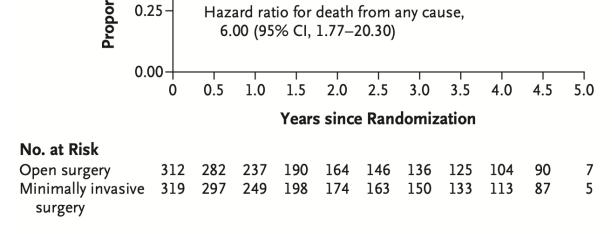
ESTABLISHED IN 1812

**NOVEMBER 15, 2018** 

VOL. 379 NO. 20

# Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer A Overall Survival

Pedro T. Ramirez, M.D., Michael Frumovitz, M.D., Rene Pareja, M.D., Aldo Lo<sub>i</sub> Reitan Ribeiro, M.D., Alessandro Buda, M.D., Xiaojian Yan, M.D., Yao Shuzho

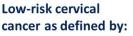

1.00

**REGARDING THE NEW GUIDELINES** »The use of minimally invasive approach proposed in new guidelines as an option in patients with 'low risk' tumors should be interpreted with caution, as such a recommendation is not based on properly conducted prospective evaluation and patients should be informed of this fact".

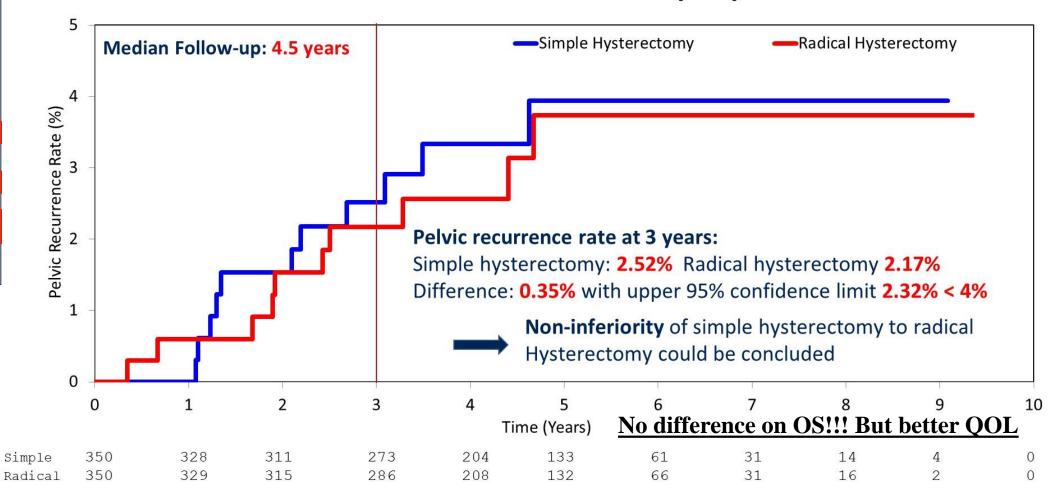
# stage of IA1 (lymphovascular invasion), IA2 (stromal invasion, 3 to 5 mm in depth and <7 mm in width), or IB1 (tumor size of ≤4 cm in the greatest dimension and no node involvement) </p>

> 0-1 ECOG PS

#### Ramirez P et al., IJGC 2023



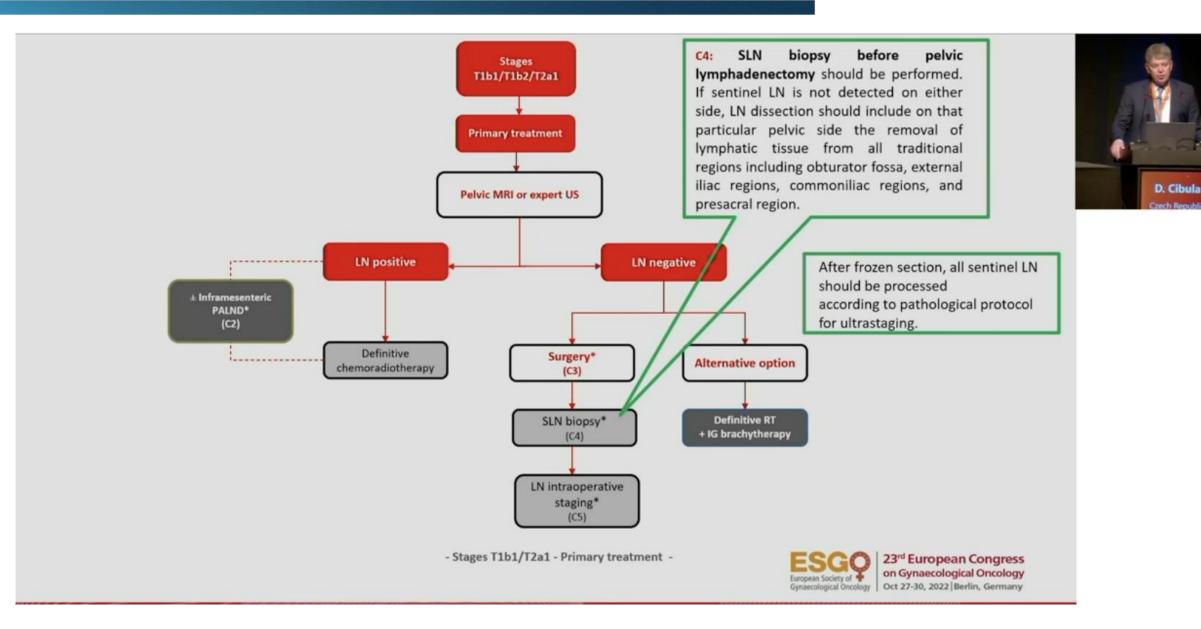

### RH vs SH


Minimally invasive surgery

80% in SH arm 69% in RH arm

## **Pelvic Recurrence Rate (ITT)**




- Squamous cell, adenocarcinoma, adenosquamous carcinoma
- Stage IA2 and IB1
- < 10 mm stromal</p>
  - invasion on LEEP/cone
- < 50% stromal
- invasion on MRI
- Max dimension of ≤ 20 mm
- Grade 1-3 or not assessable







## SLN biopsy before pelvic lymphadenectomy



## SLN biopsy before pelvic lymphadenectomy

Gynecologic Oncology 129 (2013) 384-388



Contents lists available at SciVerse ScienceDirect

#### **Gynecologic Oncology**

journal homepage: www.elsevier.com/locate/ygyno



In order to benefit from the results of intra-operative FS examination adopting amore detailed intra-operative pathologic processing is essential. The alternative would be to wait for final pathology results and use two-step surgical management.

High false negative rate of frozen section examination of sentinel lymph nodes in patients with cervical cancer

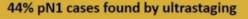
J. Slama a,\*, P. Dundr b, L. Dusek c, D. Cibula a

- a Gynaecologic Oncology Centre, General University Hospital and 1st School of Medicine, Charles University, Prague, Czech Republic
- b Institute of Pathology, General University Hospital and 1st School of Medicine, Charles University, Prague, Czech Republic

**Table 3**Diagnostic value of SN frozen section (as compared with SN ultrastaging results).

| FS          | All metastases    | LVD               | Macrometastases   |
|-------------|-------------------|-------------------|-------------------|
| Sensitivity | 0.56 (0.44; 0.68) | 0.08 (0.01; 0.28) | 0.81 (0.67; 0.91) |
| Specificity | 1.00 (0.97; 1.00) | 1.00 (0.96; 1.00) | 1.00 (0.97; 1.00) |
| PPV         | 1.00 (0.89; 1.00) | 1.00 (0.19; 1.00) | 1.00 (0.89; 1.00) |
| NPV         | 0.83 (0.76; 0.88) | 0.87 (0.81; 0.91) | 0.94 (0.89; 0.97) |

FS = frozen section; LVD = low volume disease (micrometastases and ITC); NPV = negative predictive value; PPV = positive predictive value.


#### SLN from 647 patients processed by an intensive ultrastaging protocol

Standard assessment ≈ frozen section

|                 | FROZEN     |            | TOTAL           |           |                   |
|-----------------|------------|------------|-----------------|-----------|-------------------|
|                 | SECTION    | 1st level  | 2nd - 4th level |           | % of all patients |
| MAC             | 36 (83.7%) | 6 (14.0%)  | 1 (2.3%)        | 0 (0%)    | 43 (6.6%)         |
| MIC             | 10 (25.6%) | 14 (35.9%) | 8 (20.5%)       | 6 (15.4%) | 39 (6.0%)         |
| ITC             | 2 (9.1%)   | 6 (27.3%)  | 10 (45.4%)      | 4 (18.2%) | 22 (3.4%)         |
| pN1 (MAC + MIC) | 46 (56.1%) | 20 (24.4%) | 9 (11.0%)       | 6 (7.3%)  | 82 (12.7%)        |

ITC: isolated tumour cells

macrometastases; MIC: micrometastases





c Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic

### Is there a role for NACT?

#### T1b3-T4a

NACT in patients who otherwise are candidates for upfront definitive CTRT and IGBT is not recommended outside of clinical trials [II, D].

### T1B3 and T2a2 (LN Negative)

NACT followed by radical surgery should not be performed outside clinical trials [I, E].

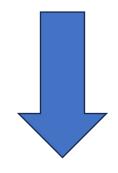
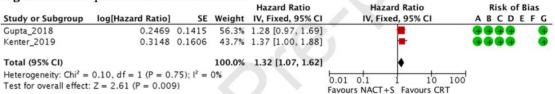



Figure 5. Forest plot of severe acute toxicity

|                                   | NACT+S                       | CR       | Т        |         | Risk Ratio                 | Ris             | k Ratio       |
|-----------------------------------|------------------------------|----------|----------|---------|----------------------------|-----------------|---------------|
| Study or Subgroup                 | <b>Events Total</b>          | Events   | Total    | Weight  | M-H, Random, 95% CI        | M-H, Ran        | dom, 95% CI   |
| Total (95% CI)                    | 3690                         |          | 3654     | 100.0%  | 2.43 [1.28, 4.62]          |                 | •             |
| Total events                      | 170                          | 71       |          |         |                            |                 |               |
| Heterogeneity: Tau <sup>2</sup> = | = 0.77; Chi² = 3             | 8.54, df | = 11 (P  | < 0.000 | 1); I <sup>2</sup> = 71%   | 0.01 0.1        | 1 10 100      |
| Test for overall effect:          | Z = 2.72 (P =                | 0.007)   |          |         |                            | Favours NACT+   |               |
| Test for subgroup diff            | ferences: Chi <sup>2</sup> = | 19.93, d | f = 5 (F | 0.001   | .), I <sup>2</sup> = 74.9% | ravours INACT T | 5 Favours CK1 |


Figure 2. Forest plot of overall survival

|                            |                                          |                               | <b>Hazard Ratio</b>                                                                                 | Hazard Ratio               | Risk of Bias                                                            |
|----------------------------|------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|
| log[Hazard Ratio]          | SE                                       | Weight                        | IV, Fixed, 95% CI                                                                                   | IV, Fixed, 95% CI          | ABCDEFO                                                                 |
| 0.0247                     | 0.158                                    | 54.4%                         | 1.03 [0.75, 1.40]                                                                                   |                            | 0000 0                                                                  |
| 0.1398                     | 0.1726                                   | 45.6%                         | 1.15 [0.82, 1.61]                                                                                   | *                          | 0000                                                                    |
|                            |                                          | 100.0%                        | 1.08 [0.86, 1.36]                                                                                   | •                          |                                                                         |
| 0.24, $df = 1$ ( $P = 0$ . | 62); $I^2 =$                             | 0%                            |                                                                                                     | 101 011                    | 4                                                                       |
| Z = 0.66 (P = 0.51)        |                                          |                               |                                                                                                     | Favours NACT+S Favours CRT |                                                                         |
|                            | 0.0247<br>0.1398<br>0.24, df = 1 (P = 0. | 0.0247 0.158<br>0.1398 0.1726 | 0.0247 0.158 54.4%<br>0.1398 0.1726 45.6%<br>100.0%<br>0.24, df = 1 (P = 0.62);   <sup>2</sup> = 0% | Note                       | Iog[Hazard Ratio]   SE   Weight   IV, Fixed, 95% CI   IV, Fixed, 95% CI |

#### Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Figure 3. Forest plot of disease-free survival



Marchetti C et al., Cancer Treat Rev 2020

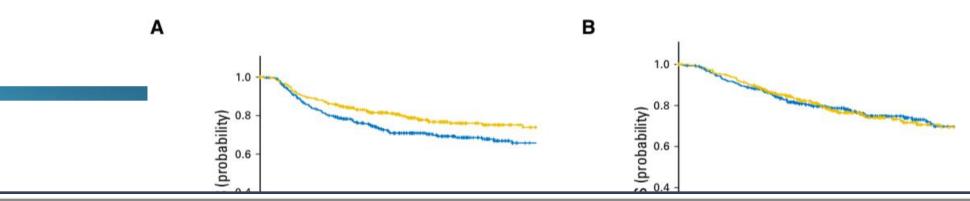



Table 4. Adverse Events of Any Grade Occurring or Persisting > 90 Days or > 24 Months After Completion of Treatment

| > 90 Days |                            |               |        | > 24                       | > 24 Months   |        |  |
|-----------|----------------------------|---------------|--------|----------------------------|---------------|--------|--|
| Site      | NACT Plus Surgery, No. (%) | CTRT, No. (%) | P      | NACT Plus Surgery, No. (%) | CTRT, No. (%) | Р      |  |
| Rectal    | 18 (5.7)                   | 42 (13.3)     | .002   | 7 (2.2)                    | 11 (3.5)      | .474   |  |
| Bladder   | 9 (2.8)                    | 23 (7.3)      | .017   | 5 (1.6)                    | 11 (3.5)      | .204   |  |
| Vaginal*  | 63 (19.9)                  | 117 (36.9)    | < .001 | 38 (12)                    | 81 (25.6)     | < .001 |  |
| Other†    | 30 (9.5)                   | 17 (5.4)      | .068   | 17 (5.4)                   | 11 (3.5)      | .334   |  |

NOTE. Adverse events were assessed using the National Cancer Institute Common Terminology Criteria for Adverse Events version 2.0. Some patients had more than one adverse event.

Abbreviations: CTRT, concomitant chemotherapy and radiotherapy; NACT, neoadjuvant chemotherapy.

<sup>†</sup>Other adverse events included lymphedema, hernia, and intestinal obstruction.



Gupta S et al., JCO 2018, Kenter G et al. JCO 2019

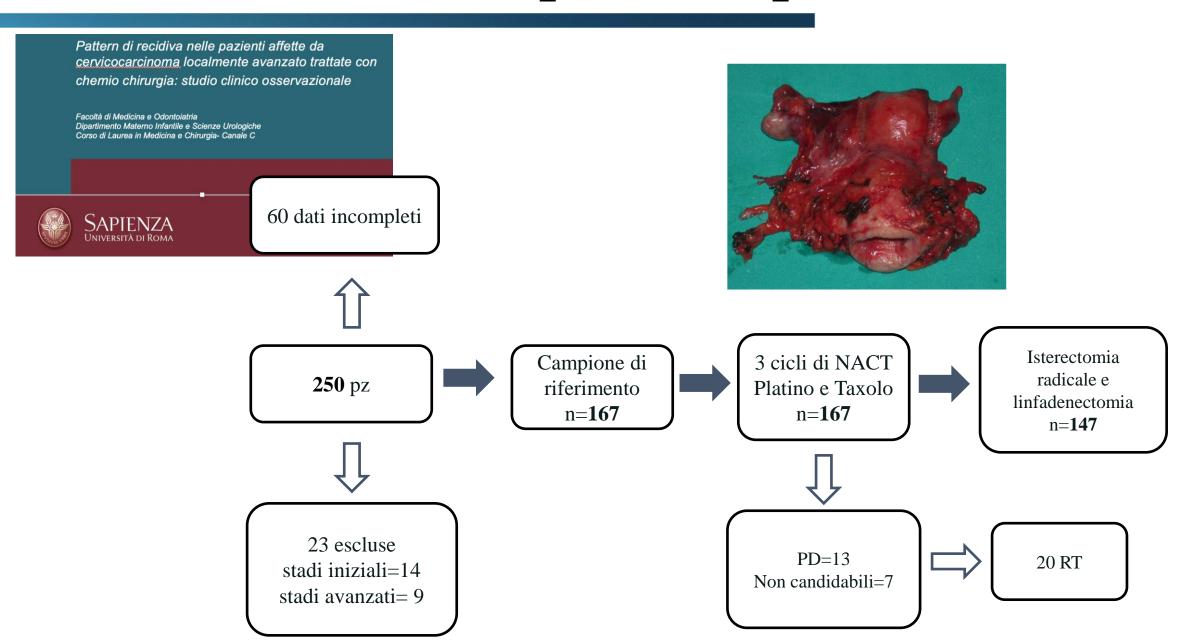
<sup>\*</sup>Vaginal adverse events included synechiae, stenosis, and fibrosis.

### **Criticisms**

- ➤ 12 years accrual (SLOW)
- Primary end point PFS (OS?)
- Statistical design: superiority NACT
- Final sample size 730 (635 enrolled! 87% accrual) (EARLIER STOPPED)
- ➤ 72% operability rate (LOW)
- QoL not explored

- > Study period: May 2002-June 2014
- ➤ Patient enrolled=620
- ➤ Primary endpoint=5-yrs OS.
- ➤ Protocol treatment was completed in 459 (74%) patients (71% for NACTS; 82% for CCRT).
- ➤ (76%) patients underwent surgery. Main reasons for not having surgery as per protocol, were toxicity (25/74, 34%), progressive disease (18/74, 24%) and insufficient response to NACT (12/74, 16%).
- ➤ Short term severe adverse events (≥G3) occurred more frequently in arm 1 than in arm 2 (35% vs 21%, p < 0.001).
- > Heterogeneous chemotherapic treatment

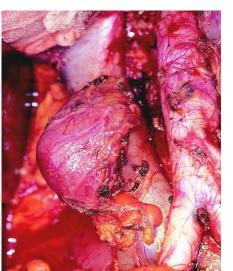
## Surgical management of stages T1b3 and T2a2 N0


#### Role of Surgery in T1B3 and T2a2 (LN Negative) Tumors

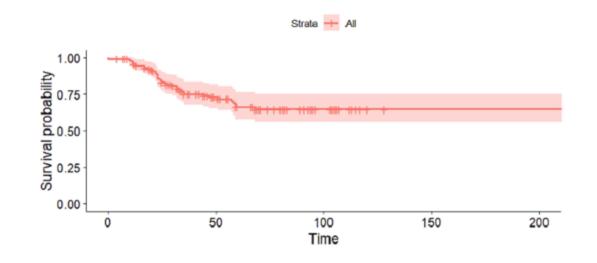
- There is limited evidence to guide the choice between surgical treatment vs CTRT with IGBT in LN negative patients with T1b3 and T2a2 tumors. Histology, tumor size, completeness of the cervical rim, uterine corpus invasion, magnitude of vaginal invasion, age, comorbidity, menopausal status, body mass index, hemoglobin and experience with type C radical hysterectomy are some of the factors to consider [IV, B].
- For surgery, avoidance of the combination of radical surgery and post-operative external radiotherapy requires acceptance for modifications of the traditional selection criteria (tumor size, degree of invasion, LVSI) for adjuvant treatment [IV, B].
- ► The patient should be discussed in a multidisciplinary team and should be counseled for the advantages and disadvantages of both treatment options (surgery vs radiotherapy) in relation to the individual presence of prognostic factors [IV, A].
- ► Given the limited number of patients with T1b3 and T2a2 (<10%) tumors, referral to highly specialized centers for treatment is recommended [IV, A].

- Type C radical hysterectomy is recommended. LN staging should follow the same principles as in T1b1-2 tumors [IV, A].
- NACT followed by radical surgery should not be performed outside clinical trials [I, E].

## NACT????


# NACT (Sapienza experience)




# Results

#### **Recurrence rate 34%**





|                     | IB2<br>n=2 | IIA<br>n=4 | IIIB<br>n=40   | IIIA<br>n=1 | IIIB<br>n=5 | IIIC1<br>n=80   | IIIC2<br>n=8   | IVA<br>n=5 | TOT<br>n=145    |
|---------------------|------------|------------|----------------|-------------|-------------|-----------------|----------------|------------|-----------------|
| Vaginale            | -          | -          | 1 (2,5%)       | -           | 1 (25%)     | <b>4</b> (4,9%) | -              | -          | <b>6</b> (4,1%) |
| Linfonodale         | -          | -          | 1 (2,5%)       | -           | -           | <b>6</b> (7,4%) | <b>2</b> (25%) | 1 (20%)    | <b>10</b> (7%)  |
| Pelvica centrale    | -          | -          | -              | -           | -           | <b>3</b> (3,7%) | -              | -          | 3 (2,1%)        |
| Isolate a distanza  | -          | -          | -              | -           | 1 (25%)     | 3 (3,7%)        | -              | -          | 4 (2,8%)        |
| A distanza + locale | -          | -          | <b>8</b> (20%) | -           | -           | <b>17</b> (21%) | 1 (12,5)       | 1 (20%)    | 27 (18,6%)      |



# CC more than one!!!

| HPVA                                                    | NHPVA                       |
|---------------------------------------------------------|-----------------------------|
| Usual-type                                              | Endometrioid adenocarcinoma |
| Villoglandular                                          | Gastric-type adenocarcinoma |
| Mucinous                                                | Serous carcinoma            |
| Mucinous, intestinal type                               | Clear cell adenocarcinoma   |
| Mucinous, signet ring cell type                         | Mesonephric carcinoma       |
| Invasive stratified mucin-producting carcinoma (iSMILE) | Invasive adenocarcinoma NOS |

#### **Rare Tumors**

- ► Histopathological diagnosis of rare cervical tumors needs confirmation (second opinion) by an expert pathologist [IV, A].
- ► Treatment and care of rare cervical tumors needs to be centralized at referral centers and discussed in a multidisciplinary tumor board [IV, A].

# Non HPV related cervical cancer

**TABLE 3** | Studies of FIGO stage and prognosis of human papillomavirus (HPV)-negative cervical cancers.

| Study<br>(Reference)            | Cases (HPV negative/ overall) | HPV<br>testing            | Advanced FIGO stage<br>(HPV negative vs. HPV<br>positive) | Lymphatic metastasis<br>(HPV negative vs. HPV<br>positive) | DFS (HPV negative vs. HPV positive)                                                            | OS (HPV negative vs. HPV positive)                                          |  |
|---------------------------------|-------------------------------|---------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Nicolas<br>et al. (57)          | 21/214                        | PCR 91% vs. 57%, p<0.01   |                                                           | 67% vs. 36%, <i>p</i> <0.01                                | 59.8 m (95%Cl 32.0–87.6 m) vs.<br>132.2 m (95%Cl 118.6–145.8<br>m), p<0.01                     | 77.0 m (95%Cl 47.2–106.8 m) vs.<br>153.8 m (95%Cl 142.0–165.6 m),<br>p=0.01 |  |
| Van der<br>Marel et al.<br>(58) | 8/136                         | HC2 <sup>™</sup> ,<br>PCR | 87.5% vs. 52.3%,<br>p=0.053                               | 37.5% vs. 17.2%,<br>p=0.150                                | 51.9 m (95%Cl 12.2–91.7 m) vs. 109.9 m (95%Cl 98.2–121.5 m),                                   | 67.7 m (95%Cl 20.0–106.9 m) vs.<br>108.9 m (95%Cl 97.7–120.0 m),<br>p=0.225 |  |
| Feng et al. (59)                | 43/122                        | Immur                     | HPV-positive HNSCC                                        | HPV-ne                                                     | 5 year: HR=1.250 (95%Cl 0.562–2.784), p=0.584<br>8 year: HR=1.530 (95%Cl 0.697–3.362), p=0.289 |                                                                             |  |
|                                 |                               | TI                        | tation rate                                               | NOO!                                                       | TME  Higher mutation rate Frequent p53 mutations                                               | 5% of CC are HPV                                                            |  |
|                                 |                               | Higher radio              |                                                           | Gell survival                                              | Lower radiosensityity Relatively poor prognosis                                                | 370 of ee are III v                                                         |  |
|                                 |                               |                           | hypoxia<br>gnature                                        | Click on image to zoom                                     | Similar hypoxia<br>gene signature                                                              |                                                                             |  |

# A MANGO proposal





A **SURVEY** testing the adherence of MANGO centres to guidelines highlighting these and other cristicisms for each tumor.





