

ASCO 2019 Update

Claudio Zamagni

Direttore SSD Oncologia Medica Addarii Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi

The state of PARP Inhibitors in Ovarian Cancer

Agent	Trial	Volunteer and Study criteria			eria	Efficacy	Tovicity
	Irial	ROC	HGS	gBRCA	Maint	Efficacy	Toxicity
Niraparib	NOVA ¹ (n=546)	ſ	J		J	+++PFS in gBRCA+ and gBRCA-	Nausea, Thrombocytopenia, Fatigue, Anemia
Olaparib	SOLO-2 ² (n=295)	ſ	ſ	J	ſ	+++PFS	Nausea, Fatigue, Anemia, Emesis
	Phase 2 ³ (n=193)	ſ	ſ	J		30%ORR 40%SD8w	Fatigue, Nausea, Anemia, Abdominal pain
Rucaparib	ARIEL-3 ⁴	√ ≥3 lines	J		J	+++PFS in gBRCA+, LOH+, ITT	Nausea, Fatigue, Anemia, Constipation
	Phase 2 ⁵ (n=106)	√ ≥2 lines	J	√ Somatic allowed		54% ORR 9m mDOR	Nausea, Fatigue, Anemia, Abdominal pain


(1) Mirza, et al. NEJM 2016; 375:2154-64; (2) Pujade-Lauraine, et al. Lancet Oncol 2017; 18:1274-84; (3) Ledermann, et al. Lancet Oncol 2014; 15:852-61; (4) Coleman, et al. Lancet 2017; 390:1949-61; (5) Oza, et al. Gynecol Oncol 2017; 147:267-75.

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Don S. Dizon

SOLO1: Maintenance PARP after first-line treatment

Moore, et al. NEJM 2018; 379:2495-505

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Don S. Dizon

Olaparib Monotherapy versus Chemotherapy for Germline BRCA-Mutated Platinum-Sensitive Relapsed Ovarian Cancer Patients: Phase III SOLO3 Trial

<u>Richard T Penson</u>, ¹ Ricardo Villalobos Valencia, ² David Cibula, ³ Nicoletta Colombo, ⁴ Charles A Leath III, ⁵ Mariusz Bidziński, ⁶ Jae-Weon Kim, ⁷ Joo Hyun Nam, ⁸ Radoslaw Madry, ⁹ Carlos Hernández, ¹⁰ Paulo AR Mora, ¹¹ Sang Young Ryu, ¹² Tsveta Milenkova, ¹³ Elizabeth S Lowe, ¹⁴ Laura Barker, ¹³ Giovanni Scambia ¹⁵

¹Massachusetts General Hospital, Boston, MA, USA; ²Centro Medico Dalinde, Mexico City, Mexico; ³First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; ⁴University of Milan-Bicocca and IEO European Institute of Oncology IRCCS, Milan, Italy; ⁵University of Alabama, Birmingham, AL, USA; ⁶Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland; ⁷Seoul National University Hospital, Seoul, South Korea; ⁸Asan Medical Center, Seoul, South Korea; ⁹Medical University K. Marcinkowski and the Clinical Hospital of the Transfiguration, Poznań, Poland; ¹⁰Oaxaca Site Management Organization, Oaxaca de Juarez, Mexico; ¹¹Instituto COI de Educação e Pesquisa, Rio de Janeiro, Brazil; ¹²Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; ¹³AstraZeneca, Cambridge, UK; ¹⁴AstraZeneca, Gaithersburg, MD, USA; ¹⁵Università Cattolica del Sacro Cuore-Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy

ClinicalTrials.gov identifier: NCT02282020
This study was sponsored by AstraZeneca; part of an alliance between AstraZeneca and Merck & Co., Inc., Kenilworth, NJ, USA

PRESENTED AT: 2019 ASCO ANNUAL MEETING

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Richard T Penson, Massachusetts General Hospital, Boston, MA, USA

Background

- In a randomized Phase II trial (Study 12), olaparib treatment showed antitumor activity and was well tolerated in women with relapsed gBRCA-mutated ovarian cancer who were either partially platinum sensitive (PFI 6–12 months) or platinum resistant¹
- Based on a pooled analysis of Phase I and II data, olaparib (400 mg bid, capsules) was approved by the FDA for the treatment of patients with gBRCA-mutated advanced ovarian cancer who had received ≥3 prior lines of chemotherapy²
- SOLO3 was a confirmatory Phase III study evaluating the efficacy of treatment with olaparib (300 mg bid, tablets) versus physician's choice of non-platinum chemotherapy in women with PSR gBRCA-mutated ovarian cancer who had received ≥2 prior lines of platinum-based chemotherapy

bid, twice daily; FDA, US Food and Drug Administration; gBRCA, germline BRCA1 or BRCA2; PFI, platinum-free interval; PSR, platinum-sensitive relapsed 1. Kaye SB et al. J Clin Oncol 2012;30:372–9; 2. Matulonis UA et al. Ann Oncol 2016;27:1013–19

Study Design

 Relapsed, high-grade serous or endometrioid ovarian, primary peritoneal, and/or fallopian tube cancer

- Germline BRCAm
- ECOG performance status 0–2
- ≥2 previous lines of platinum-based chemotherapy*
- Platinum sensitive[†]

Study treatment administered until disease progression

Olaparib tablets 300 mg bid (n=178)

2:1 randomization

Stratified by:

- Selected chemotherapy[‡]
- Number of prior lines of chemotherapy
- Time to progression after previous platinum-based chemotherapy

Non-platinum chemotherapy§ (n=88)

- PLD (n=47)
- Paclitaxel (n=20)
- Gemcitabine (n=13)
- Topotecan (n=8)

Primary endpoint

ORR by BICR (RECIST v1.1)

Secondary endpoints

- PFS
- PFS2
- OS
- TFST
- TSST
- HRQoL
 - Safety

*Prior treatment with a PARP inhibitor was not permitted;

†Fully platinum sensitive: progression > 12 months after platinum-based chemotherapy; partially platinum sensitive: progression 6–12 months after platinum-based chemotherapy;

 $^{\ddagger}\!For\ each\ patient, the\ investigator\ declared\ their\ choice\ of\ non-platinum\ chemotherapy\ before\ randomization;$

Open-label

⁶PLD, 50 mg/m² on day 1 q4w; paclitaxel, 80 mg/m² on days 1, 8, 15, and 22 q4w; gemcitabine, 1000 mg/m² on days 1, 8, and 15 q4w; topotecan, 4 mg/m² on days 1, 8, and 15 q4w BICR, blinded independent central review; BRCAm, BRCA1 or BRCA2 mutation; ECOG, Eastern Cooperative Oncology Group; HRQoL, health-related quality of life; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PFS2, second progression-free survival; PLD, pegylated liposomal doxorubicin; q4w, every 4 weeks; RECIST, response evaluation criteria in solid tumors; TFST, time to first subsequent therapy or death; TSST, time to second subsequent therapy or death

PRESENTED AT: 2019 ASCO ANNUAL MEETING

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Richard T Penson, Massachusetts General Hospital, Boston, MA, USA

Patient Disposition

	Olaparib	Chemotherapy
Randomized, n	178	88
Treated, n (%)	178 (100)	76(86)
BICR-measurable disease at baseline, n (%)	151 (85)	72 (82)
Discontinued study treatment before DCO, n (%) Objective disease progression AE Patient decision Severe protocol non-compliance Study-specific discontinuation criteria Other Clinical progression Investigator decision Chemotherapy complete	135 (76) 111 (62) 13 (7) 5 (3) 1 (1) 1 (1) 4 (2) -	75 (85) 30 (34) 15 (17) 10 (11) 0 3 (3) 4 (5) 6 (7) 7 (8)
Remained on study treatment at DCO, n (%)	43 (24)	1 (1)

AE, adverse event; DCO, data cut-off

ESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Richard T Penson, Massachusetts General Hospital, Boston, MA, USA

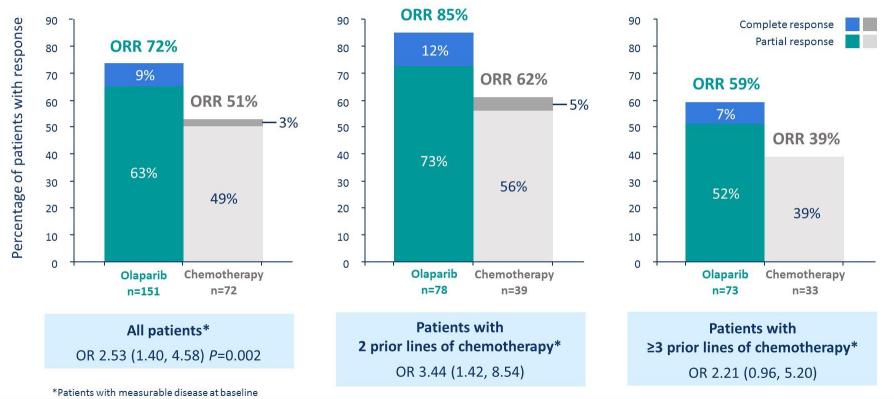
Patient Characteristics

	Olaparib (n=178)	Chemotherapy (n=88)
Primary tumor location, n (%) Ovary Fallopian tube Primary peritoneal Other*	160 (90) 7 (4) 10 (6) 1 (1)	74 (84) 8 (9) 3 (3) 3 (3)
gBRCAm by Myriad testing, n (%) BRCA1 BRCA2 Negative or missing†	120 (67) 50 (28) 8 (4)	52 (59) 32 (36) 4 (5)
Platinum sensitivity, n (%) Progressed ≤6 months after platinum Progressed >6 to ≤12 months after platinum Progressed >12 months after platinum	0 114 (64) 64 (36)	1 (1) 50 (57) 37 (42)
Number of previous chemotherapy regimens, n (%) 2 3 ≥4	92 (52) 41 (23) 45 (25)	47 (53) 24 (27) 17 (19)

^{*}Other primary tumor locations were "rectal wall" in the olaparibarm, and "uterus", "liver metastasis", and "pleura" in the chemotherapy arm;

PRESENTED AT: 2019 ASCO ANNUAL MEETING

[†]Central Myriad results were either unavailable or negative, but patients had been shown to have a gBRCAm by local testing

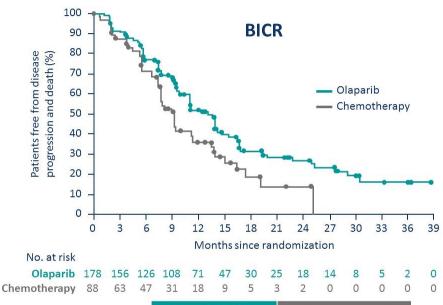

Patient Characteristics

	Olaparib (n=178)	Chemotherapy (n=88)
Histology, n (%) Serous Endometrioid Undifferentiated Mixed serous/endometrioid Other*	157 (88) 15 (8) 3 (2) 3 (2) 0	80 (91) 4 (5) 3 (3) 0 1 (1)
ECOG performance status, n (%) 0 1 2	135 (76) 42 (24) 1 (1)	63 (72) 25 (28) 0
Prespecified study chemotherapy, n (%) PLD Paclitaxel Gemcitabine Topotecan	90 (51) [†] 37 (21) [†] 36 (20) [†] 15 (8) [†]	47 (53) 20 (23) 13 (15) 8 (9)

^{*}The other histology type in the chemotherapy arm was "adenocarcinoma, poorly differentiated";

[†]For each patient, the investigator declared a choice of non-platinum chemotherapy before randomization. Therefore, the olaparib column shows the chemotherapy option that patients would have received had they been randomized to chemotherapy instead of olaparib

Primary Endpoint: ORR by BICR


2019 **ASCO**

PRESENTED AT:

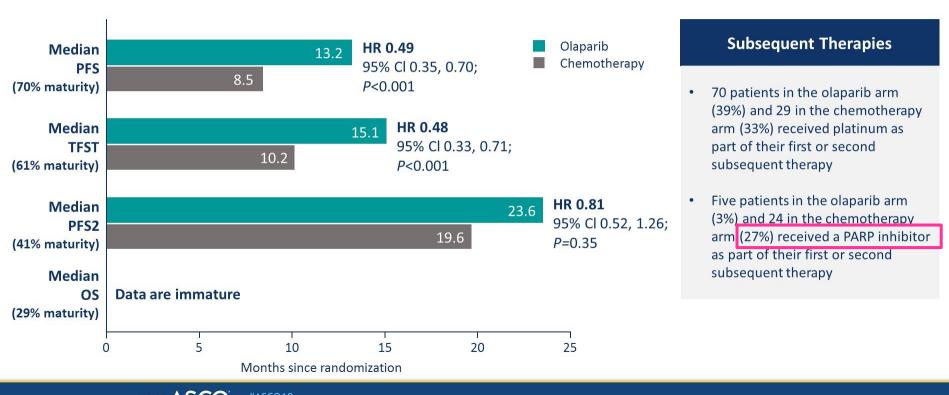
#ASCO19 Slides are the property of the author

PRESENTED BY: Dr Richard T Penson, Massachusetts General Hospital, Boston, MA, USA

PFS (Intention-To-Treat Population)

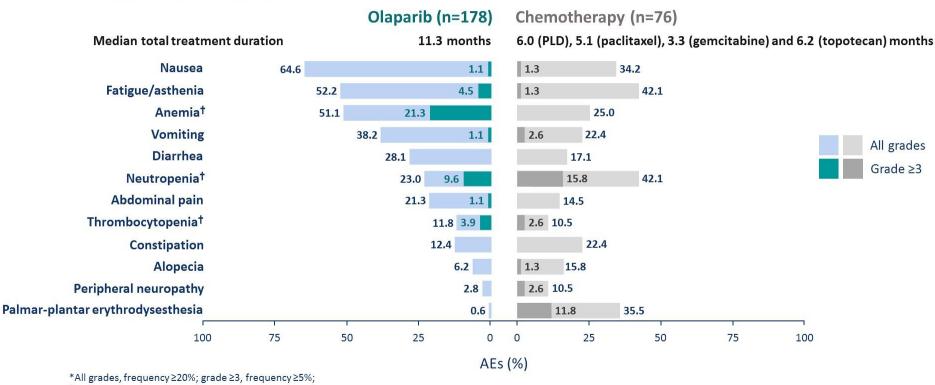
	Olaparib (n=178)	Chemotherapy (n=88)
PFS events, n (%)	110 (62)	49 (56)
Median PFS, months	13.4	9.2
HR (95% CI), <i>P</i> value	0.62 (0.43, 0.91); <i>P</i> =0.013	

	Olaparib (n=178)	Chemotherapy (n=88)
PFS events, n (%)	123 (69)	63 (72)
Median PFS, months	13.2	8.5
HR (95% CI), <i>P</i> value	0.49 (0.35,	0.70); <i>P</i> <0.001


PRESENTED AT: 2019 ASCO

#ASCO19

Slides are the property of the author permission required for reuse.


PRESENTED BY: Dr Richard T Penson, Massachusetts General Hospital, Boston, MA, USA

Investigator-Assessed Efficacy Endpoints and Subsequent Therapies

PRESENTED AT:

Most common AEs* and selected AEs of interest in either treatment arm

†Grouped terms

2019 **ASCO** PRESENTED AT:

#ASCO19 Slides are the property of the author,

PRESENTED BY: Dr Richard T Penson, Massachusetts General Hospital, Boston, MA, USA

AEs of Special Interest

	Olaparib (n=178)	Chemotherapy (n=76)
MDS/AML, n (%)	4 (2)	3 (4)*
New primary malignancies, n (%)	3 (2)	0

- The three new primary malignancies in the olaparib arm were:
 - Lung cancer (gBRCA2 mutation)
 - Gastric cancer (gBRCA1 mutation)
 - Breast cancer (gBRCA1 mutation)
- No AEs of pneumonitis were reported in the study

^{*}Two patients received PLD as study treatment and one patient received paclitaxel; two of these three patients received a PARP inhibitor as a subsequent treatment AML, acute myeloid leukemia; MDS, myelodysplastic syndromes

SOLO-3: Things to make you go Hmmmm...

Toxicities: compared to chemotherapy, olaparib associated with:

- -- Higher SAE rate (24 vs 18%)
 - -- Less treatment discontinuation due to an AE (7 vs 20%)
- -- MDS/AML in 4 versus 3 patients (BUT 2/3 received PARP later)
- -- New cancers in 3 versus 0

Conclusions

- SOLO3 is the first Phase III randomized trial of a PARP inhibitor versus non-platinum-based chemotherapy in women with PSR gBRCA-mutated ovarian cancer
- A statistically significant and clinically relevant improvement in ORR and PFS was observed with olaparib versus non-platinum-based chemotherapy
- The tolerability profiles of olaparib and chemotherapy were consistent with previous data
 - Patients in the chemotherapy arm were more than twice as likely to discontinue study treatment because of an AE
- SOLO3 provides important prospective data on the efficacy of these treatment options for women with heavily pre-treated PSR gBRCA-mutated ovarian cancer

Do you even *need* chemotherapy to treat recurrence?

Answer: Probably not.....

ASCO 2019	Volunteers	Intervention	Control	Outcome
SOLO-3 #5506	PSOC (n=266)	Olaparib	Chemo	ORR 72 vs 52% OR 2.53 (95%CI 1.40-4.58) PFS 13.4 vs 9.2m HR 0.62 (95%CI 0.43-0.91)

About these volunteers:

- gBRCA+
- ≥2 lines
 About the control:
- No platinum

But SOLO 3 not design to answer this question (chemo →olaparib arm missing)

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Don S. Dizon

Abstract 5507

CLIO (NCT02822157):

Randomized phase II study evaluating efficacy of olaparib monotherapy versus physician's choice chemotherapy in platinum-resistant ovarian cancer (PROC)

<u>Adriaan Vanderstichele</u>^{1,2}, Els Van Nieuwenhuysen^{1,2}, Nicole Concin^{1,2}, Toon Van Gorp^{1,2}, Patrick Berteloot^{1,2}, Patrick Neven^{1,2}, Pieter Busschaert², Diether Lambrechts^{3,4}, Ignace Vergote^{1,2}

¹ BGOG & Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium, EU

² Laboratory of Gynaecological Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium, EU

³ Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium, EU

⁴ Center for Cancer Biology, VIB, Leuven, Belgium, EU

Treatment options for PROC patients

- 4 chemotherapeutic agents with activity in phase III trials
 Overall response rates (ORR) around 15%

 Median PFS of 3-4 months 1:
 - paclitaxel
 - pegylated liposomal doxorubicin (PLD)
 - topotecan
 - gemcitabine

#ASCO19

Slides are the property of the author,

Single-agent PARP-inhibitor (PARPi) therapy
 FDA approved in germline BRCA1/2-mutated relapsed ovarian cancer (≥3 lines)
 (2 single-arm phase II trials with olaparib² and rucaparib³)

Single-agent PARP-inhibitor treatment in PROC

Efficacy of single-agent PARPi treatment in PROC

PARPi	Biomarker	Patients	Overall response rate
Olaparib ¹	gBRCA mut	mean 4.3 prior lines	31 % (60/193)
Niraparib ²	g + sBRCA mut	≥ 3 prior lines	27 % (10/37)
Rucaparib ³	g + sBRCA mut	≥ 2 prior lines	25 % (5/20)
Niraparib ²	/	≥ 3 prior lines	6 % (17/289)

- Limited data in BRCA-wild type PROC disease (QUADRA)
- No randomized data comparing single-agent PARPi with chemotherapy in PROC

CLIO Study Design

crossover

crossover

Randomized open-label study

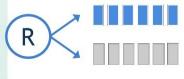
ENGOT MODEL A

- RELAPSED OVARIAN CANCER: at least 1 previous line of chemotherapy
- HISTOLOGY: High-grade serous, Endometrioid, Clear-Cell, Carcinosarcoma, Undifferentiated
- MEASURABLE DISEASE
- PREVIOUS PARPI ALLOWED

Platinum-sensitive / PSOC (n = 60)

- Relapse ≥ 6 months after platinum-based chemotherapy
- Exlusion of patients with known germline or somatic BRCA mutation prior to screening

R


OLAPARIB 300mg BID (4 tablets/day)

Physician's choice CHEMOTHERAPY (Carbo-Gemci / Carbo-Paclitaxel / Carbo-PLD)

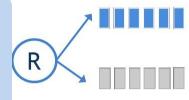
Platinum-resistant / PROC (n = 100)

- Relapse < 6 months after platinum-based chemotherapy), exclusion primary platinumrefractory disease (i.e. relapse during or < 28 days after first-line platinum)
- Germline or somatic BRCA mutation allowed

2:1 randomisation

OLAPARIB 300mg BID (4 tablets/day)

Physician's choice CHEMOTHERAPY Paclitaxel 80mg/m² Topotecan 1.25mg/m² PLD 40mg/m² Gemcitabine 1000mg/m²


2019 **ASCO** PRESENTED AT:

#ASCO19 Slides are the property of the author,

Current analysis

PROC (n = 100)

- Relapse < 6 months after platinumbased chemotherapy)
- Exclusion <u>primary</u> platinum-refractory disease (i.e. relapse during or < 28 days after first-line platinum)

2:1 randomisation

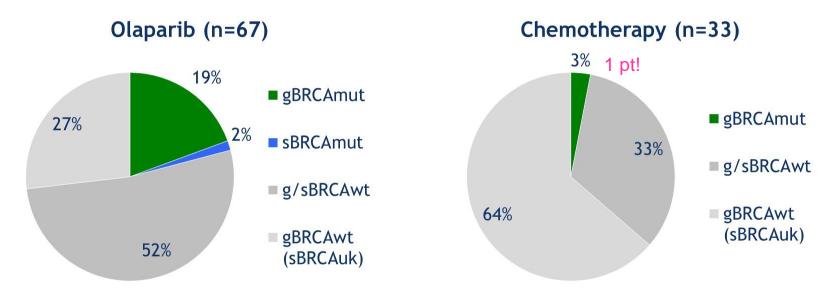
OLAPARIB 300mg BID (4 tablets/day)

Physician's choice CHEMOTHERAPY

- Paclitaxel 80mg/m² day 1, 8, 15 q3w
- Peg. liposomal doxorubicin 40mg/m² q4w
- Topotecan 1.25mg/m² d1-5 q3w
- Gemcitabine 1000mg/m² d1, 8, 15 q3w

Compare efficacy of single-agent olaparib versus physician's choice chemotherapy in PROC

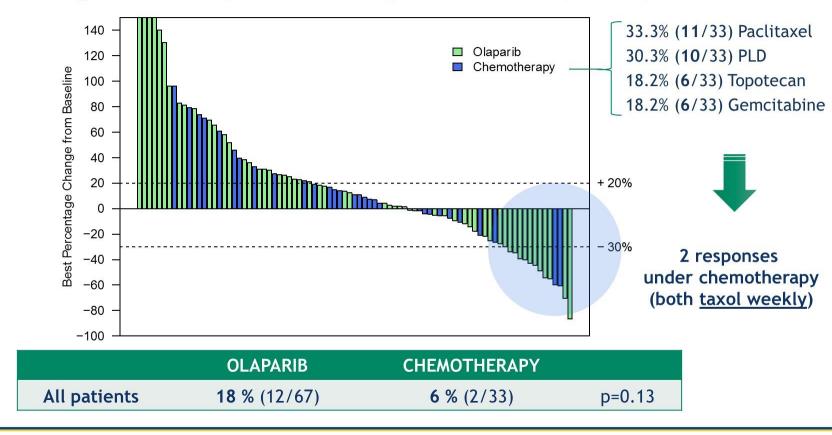
- Objective response rate (**ORR**)
- Disease-control rate (DCR) at 12 weeks
- Duration of response/clinical benefit (DOR/DCB)
- Progression-free survival (**PFS**)



#ASCO19
Slides are the property of the author, permission required for reuse.

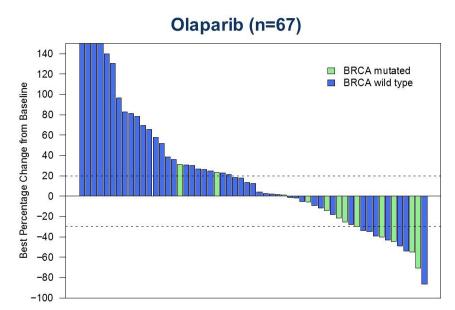
PRESENTED BY: ADRIAAN VANDERSTICHELE

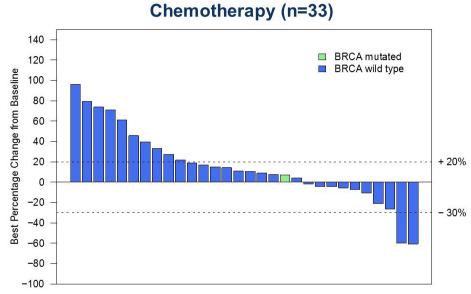
58


Baseline characteristics (PROC, n=100) **BRCA** status

Imbalance in frequency of known BRCA mutations between both groups (p=0.03) (no stratification performed, incomplete somatic testing mainly in chemo-arm)

Objective response rate (ORR for PROC, n=100) *

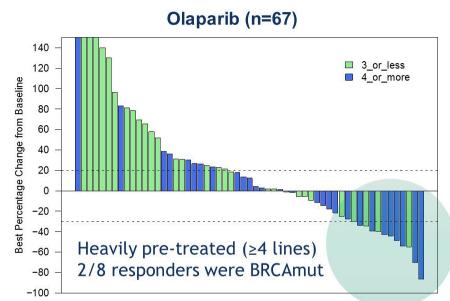

PRESENTED AT: 2019 ASCO

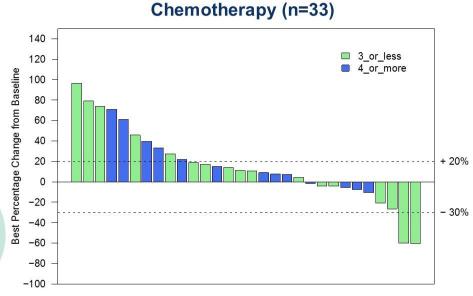

#ASCO19
Slides are the property of the author, permission required for reuse.

* Unconfirmed

10

ORR according to BRCA status (PROC, n=100)

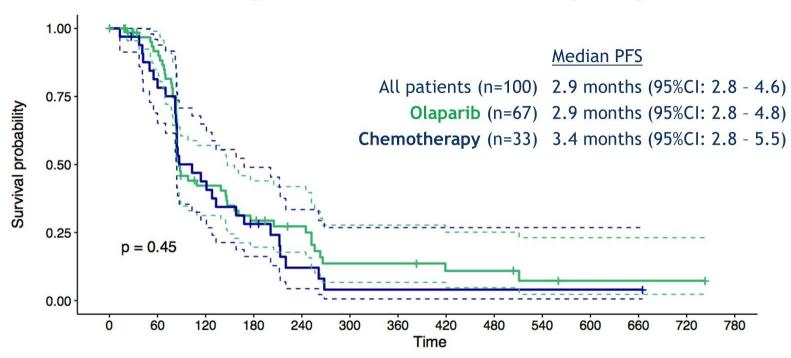



	OLAPARIB	CHEMOTHERAPY
BRCA mutated	36 % (5/14)	0 % (0/1)
BRCA wild type	13 % (7/53)	6 % (2/32)

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

ORR according to prior lines of treatment (PROC, n=100)



	OLAPARIB	CHEMOTHERAPY
3 or less prior lines	13 % (4/32)	11 % (2/19)
4 or more prior lines	23 % (8/35)	0.0 % (0/14)

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

Progression-free survival (PFS)

No PFS difference between olaparib and standard chemotherapy in PROC Hazard ratio 1.18 for olaparib (95% CI: 0.75-1.87; p=0.48)

#ASCO19
Slides are the property of the author, permission required for reuse.

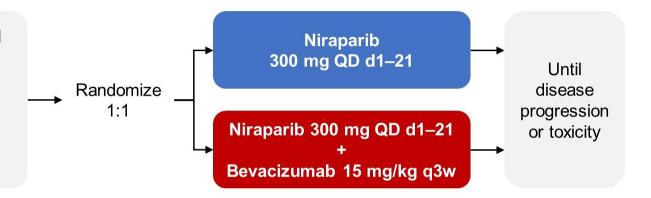
Take home messages

- Olaparib monotherapy showed a favorable objective response rate of 18% in PROC compared to 6% with standard chemotherapy.
- BRCA-mutated PROC patients had a response rate of 36% under olaparib treatment, with a clinical benefit rate at 12 weeks of 64%
- The studied population was heavily pretreated, with 49% having received 4 or more prior lines of treatment, 16% of patients received prior PARP inhibitor therapy (including placebo-controlled studies)
- No new TEAEs were noted. TEAEs leading to dose discontinuation were rare.

Combination of niraparib and bevacizumab versus niraparib alone as treatment of recurrent platinum-sensitive ovarian cancer: A randomized controlled chemotherapy-free study

ENGOT-OV24/NSGO-AVANOVA2

Mansoor R Mirza¹, E Avall-Lundqvist², MJ Birrer³, R dePont Christensen⁴, G-B Nyvang⁵, S Malander⁶, M Anttila⁷, TL Werner⁸, B Lund⁹, G Lindahl², S Hietanen¹⁰, U Peen¹¹, M Dimoula¹², H Roed¹, A Ør Knudsen⁵, L Boufercha⁴, S Staff¹³, A Krog Vistisen⁹, L Bjørge¹⁴, JU Maenpaa¹³


¹Nordic Society of Gynecological Oncology (NSGO) & Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark; ²NSGO & Linköping University Hospital, Linköping, Sweden; ³The University of Alabama at Birmingham, Birmingham, AL, USA; ⁴NSGO Clinical Trials Unit & University of Southern Denmark, Odense, Denmark; ⁵NSGO & Odense University Hospital, Odense, Denmark; ⁶NSGO & Lund University Hospital, Lund, Sweden; ⁷NSGO & Kuopio University Hospital, Kuopio, Finland; ⁸University of Utah, Salt Lake City, UT, USA; ⁹NSGO & Aalborg University Hospital, Aalborg, Denmark; ¹⁰NSGO & Turku University Hospital, Turku, Finland; ¹¹NSGO & University Hospital of Herlev, Rungsted, Denmark; ¹²NSGO & Sahlgrenska University Hospital, Göteborg, Sweden; ¹³NSGO & Tampere University Hospital, Tampere, Finland; ¹⁴NSGO & Haukeland University Hospital, Bergen, Norway

ENGOT-OV24 / NSGO-AVANOVA2 trial design

- High-grade serous/endometrioid PSROC
- Any number of previous lines of therapies
- Measurable/evaluable disease
- Prior bevacizumab permitted

Stratification factors

- HRD status (positive vs negative)
- Chemotherapy-free interval (6–12 vs >12 months)

Primary endpoint: Investigator-assessed PFS in the ITT population

ITT = intention-to-treat; NCT02354131

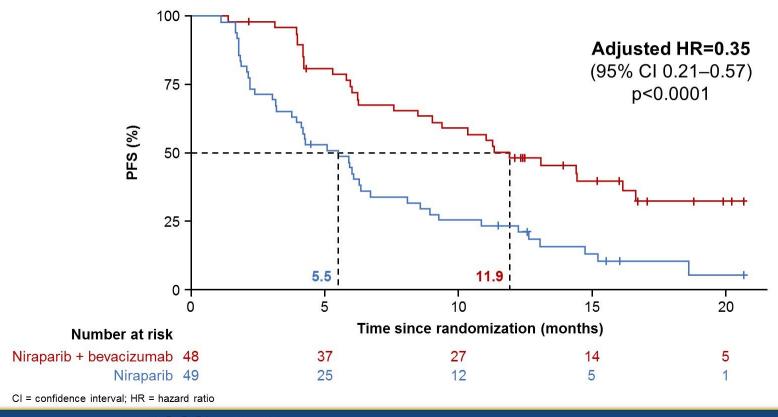
#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Mansoor Raza Mirza

Baseline patient characteristics (ITT population)

Characteristic, n (%)		Niraparib + bevacizumab (n=48)	Single-agent niraparib (n=49)
Median age, years (range		66.5 (59–70)	66 (58–70)
Primary tumour site	Ovary Fallopian tube Peritoneum	38 (79%) 5 (10%) 5 (10%)	33 (67%) 9 (18%) 7 (14%)
Chemotherapy-free interval, months	6–12 >12	20 (42%) 28 (58%)	17 (35%) 32 (65%)
HRD status	Positive ^a Negative/unknown	28 (58%) 20 (42%)	30 (61%) 19 (39%)
BRCA mutation	Any Germline Somatic	15 (31%) 6 (13%) 14 (29%)	18 (37%) 9 (18%) 14 (29%)
Pre-existing hypertension		20 (42%)	17 (35%)
Prior bevacizumab		10 (21%)	13 (27%)
Prior lines of therapy	1 2 ≥3	21 (44%) 24 (50%) 3 (6%)	27 (55%) 19 (39%) 3 (6%)

^a3 patients (1 niraparib + bevacizumab, 2 niraparib) had BRCA-mutated tumors but were erroneously considered as HRD negative/unknown for stratification



#ASCO19
Slides are the property of the author permission required for reuse.

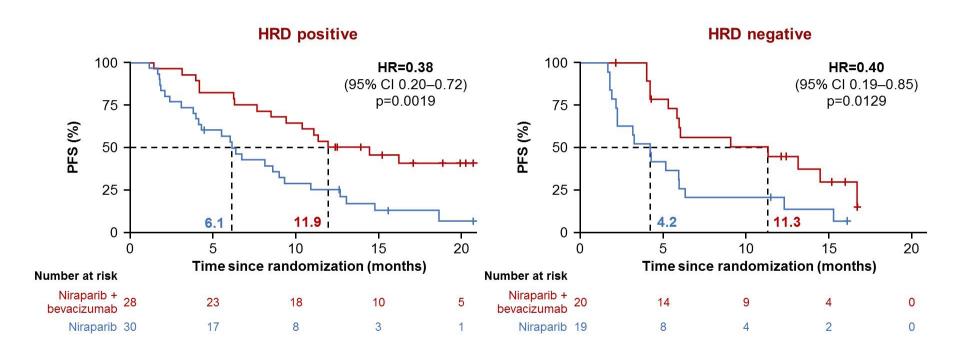
PRESENTED BY: Mansoor Raza Mirza

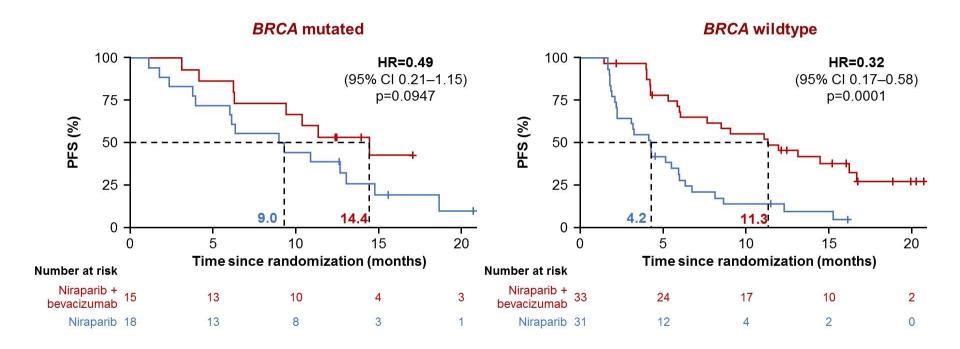
Primary endpoint: PFS in the ITT population

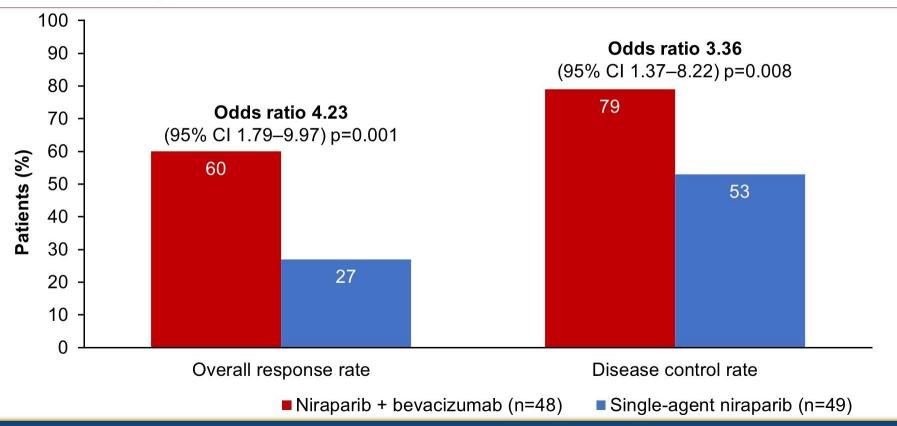
PRESENTED AT: 2019 ASCC

#ASCO19
Slides are the property of the author permission required for reuse.

PRESENTED BY: Mansoor Raza Mirza


PFS by stratification factors: Chemotherapy-free interval

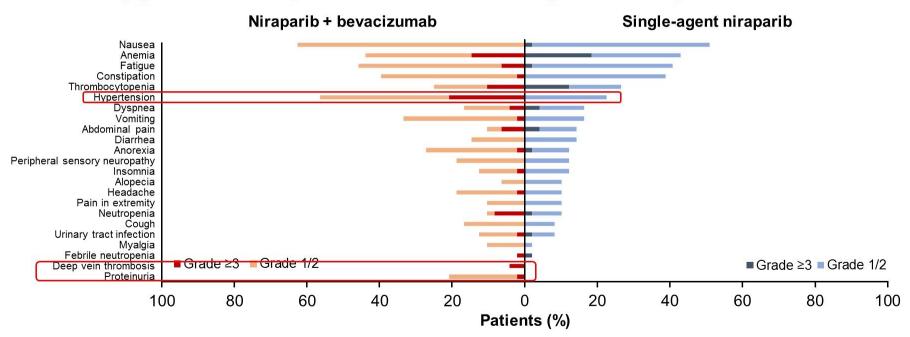

PFS by stratification factors: HRD status



PFS by BRCA status

Overall response and disease control rates

2019 ASCO


#ASCO19
Slides are the property of the author permission required for reuse.

PRESENTED BY: Mansoor Raza Mirza

Summary of adverse events

Any grade in ≥10% of patients in either arm and/or grade ≥3 in ≥2 patients overall

Additional grade ≥3 adverse events in only 1 patient comprised: gastrointestinal disorder, hypomagnesemia, hypomatremia, ileus, intestinal obstruction, skin pain, pneumonia, respiratory tract infection, and syncope in the niraparib + bevacizumab arm, and ascites, dehydration, pleural effusion, pulmonary embolism, and mucosal inflammation in the niraparib-alone arm

2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

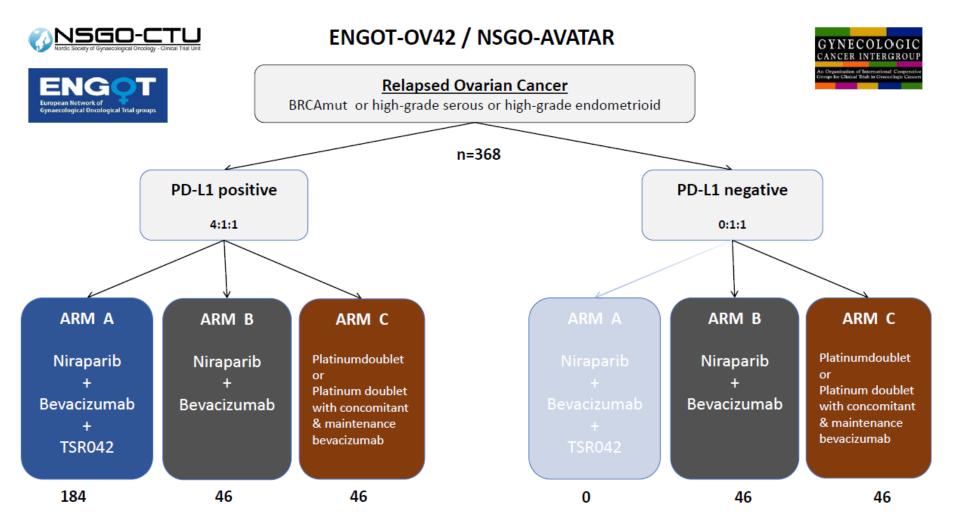
PRESENTED BY: Mansoor Raza Mirza

Dose reductions and treatment discontinuations

Number of niraparib dose reductions	Niraparib + bevacizumab (n=48)	Single-agent niraparib (n=49)
None	23 (48%)	21 (43%)
One $(300 \rightarrow 200 \text{ mg})$	24 (50%)	27 (55%)
Two $(300 \rightarrow 200 \rightarrow 100 \text{ mg})$	1 (2%)	1 (2%)

Treatment discontinuations for adverse events	Niraparib + bevacizumab (n=48)	Single-agent niraparib (n=49)
Treatment discontinuation	6 (13%)	5 (10%)

NA = not applicable


#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Mansoor Raza Mirza

Conclusions

- NSGO-AVANOVA2 is the first randomized trial to evaluate a chemotherapy-free combination of two
 established agents approved for use in recurrent ovarian cancer
 (niraparib and bevacizumab)
- Compared with niraparib alone, the combination of niraparib + bevacizumab as definitive treatment for ovarian cancer significantly improved PFS, regardless of HRD status or chemotherapy-free interval
- Niraparib + bevacizumab combination therapy was well tolerated; most patients remained on treatment until disease progression
- No detrimental effect on quality of life was observed with combination therapy
- A randomized phase 3 trial (NSGO-AVATAR) is planned to compare this regimen vs standard-of-care therapy in PSROC

Now we need to figure out---

- For women who are candidates for PARP inhibition:
 - In the maintenance setting after primary chemotherapy, should you use it instead of bevacizumab, or with bevacizumab?
 - In an era following SOLO-1, Can you use a PARP inhibitor again?

PARP in 1st line alone or in combination with bevacizumab

Trial	Patients	Maintenance trial	Status
SOLO1 (n= 391)	BRCAm	Olaparib vs placebo	Completed, positive
PRIMA (n= 303)	All comers	Niraparib vs placebo	On-going
PAOLA (n= 806)	All comers	Olaparib + bevacizumab vs placebo + bevacizumab	Accrual completed

EWOC-1: A randomized trial to evaluate the feasibility of three different first-line chemotherapy regimens for vulnerable elderly women with ovarian cancer (OC): A GCIG-ENGOT-GINECO study

C Falandry¹, A-M Savoye², L Stefani³, F Tinquaut⁴, D Lorusso⁵, J Herrstedt⁶, E Bourbouloux⁷, A Floquet⁸, P-E Brachet⁹, A Zannetti¹⁰, M-A Mouret-Reynier¹¹, R Sverdlin¹², V D'hondt¹³, O Guillem¹⁴, O Cojocarasu¹⁵, L Venat-Bouvet¹⁶, F Rousseau¹⁷, A Lortholary¹⁸, E Pujade-Lauraine¹⁹, G Freyer²⁰

¹GINECO-Centre Hospitalier Lyon Sud, Pierre-Benite, France; ²GINECO-Institut Jean Godinot, Reims, France; ³GINECO-Centre Hospitalier Annecy Genevois, Pringy, France; ⁴GINECO Statistician - Institut de Cancérologie de la Loire, St. Priest En Jarez, France; ⁵MITO and Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy; ⁶Nordic Society of Gynecologic Oncology (NSGO) and Odense University Hospital, Odense, Denmark; ⁷GINECO-ICO René Gauducheau, Saint Herblain, France; ⁸GINECO and Institut Bergonié, Bordeaux, France; ⁹GINECO-Centre François Baclesse, Caen, France; ¹⁰GINECO-Centre Hospitalier de Cholet, Cholet, France; ¹¹GINECO-Centre Jean Perrin, Clermont-Ferrand, France; ¹²GINECO-Groupe Hospitalier Paris Saint Joseph, Paris, France; ¹³GINECO-Institut du Cancer de Montpellier, Montpellier, France; ¹⁴GINECO-Centre Hospital de Gap, Gap, France; ¹⁵GINECO-Centre Hospitalier du Mans, Le Mans, France; ¹⁶GINECO-Centre Hospitalier Universitaire Dupuytren, Limoges, France; ¹⁷GINECO-Institut Paoli Calmettes, Marseille, France; ¹⁸GINECO and Hôpital Privé du Confluent, Nantes, France; ¹⁹GINECO, Paris, France; ²⁰GINECO & Centre Hospitalier Lyon-Sud, Lyon, France

EudraCT N° 2013-000266-11 Clinicaltrial NCT02001272

#ASCO19

Slides are the property of the author, permission required for reuse.

PRESENTED BY: CFALANDRY

GINECO has developed a Geriatric Vulnerability Score (GVS) to discriminate vulnerable from fit older patients (1)

GVS items

- Activity of Daily Living (ADL-Katz) score < 6</p>
- Instrumental Activities of Daily Living (IADL-Lawton) score < 25</p>
- Hospital Anxiety and Depression score (HADS) > 14
- Albuminemia < 35g/L</p>
- Lymphocyte count < 1G/L</p>

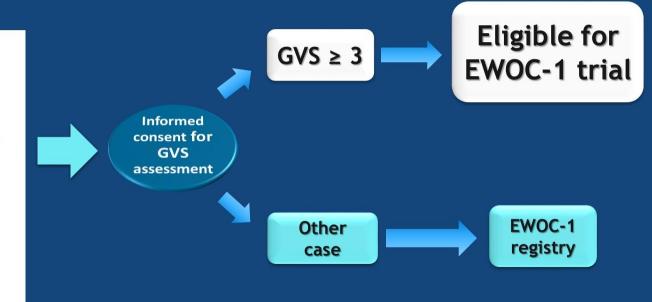
GVS = Σ scores

GVS \geq 3 defines vulnerable older patients (> 70 years old)

(1) Falandry et al. Development of a geriatric vulnerability score in elderly patients with advanced ovarian cancer treated with first-line carboplatin: a GINECO prospective trial Annals Oncol 2013

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author,
permission required for reuse.


PRESENTED BY:

EWOC-1 design 1- Patient selection

Eligibility criteria

- Age > 70yrs
- Histologically or cytologically proven epithelial cancer of the OVary, fallopian tube, and primary peritoneum
- FIGO stage III or IV
- No clinically relevant organ dysfunction
- Life expectancy > 3 months

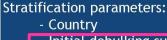
#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: CFALANDRY

EWOC-1 design

FOLLOW-

UP


carboplatin AUC 5-6 + paclitaxel 175mg/m² q21

Arm B: 3-Weekly carboplatin

carboplatin AUC 5-6 q21

Arm C: weekly carboplatin-paclitaxel

carboplatin AUC 2 + paclitaxel 60mg/m² d1, d8, d15 q28

Eligible for

EWOC-1 trial

- Initial debulking surgery outcome Randomisation according minimization

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: CFALANDRY

6 cycles

EWOC-1 endpoints

Primary endpoint

- To evaluate the feasibility of the 3 different chemotherapy regimens

Feasibility defined as the completion of 6 courses of chemotherapy without early stopping for disease progression, death or unacceptable toxicity*

Secondary endpoints

 Safety, Progression-free survival (PFS), Overall survival (OS), Quality of life (QoL), interval debulking and post-operative adjuvant therapy feasibility, geriatric covariates and aging biomarkers

^{*} Unacceptable toxicity: adverse event related to chemotherapy or treatment procedure leading either to early treatment stopping, to an unplanned hospital admission or to death or to a dose delay lasting more than 14 days or more than 2 dose reductions.

EWOC-1 patients' characteristics (1)

Characteristic	Arm A (3wCb-P)	Arm B (3wCb)	Arm C (wCb-P)
	N=40	N=40	N=40
Median age, years (range)	79 (71 - 90)	82 (70 - 94)	80 (70 - 90)
GVS global, N (%) 3 4 5	24 (60) 14 (35) 2 (5)	19 (48) 14 (35) 7 (17)	21 (53) 15 (37) 4(10)
GVS per item, N (%)			
Albuminemia < 35 G/L ADL score < 6 IADL score < 25	32 (80)	33 (82)	34 (85)
	33 (82)	34 (85)	36 (90)
	36 (90)	37 (92)	37 (92)
HADS > 14	23 (57)	28 (70)	23 (57)
Lymphocyte count < 1.0 109/L	14 (35)	16 (40)	13 (32)
Primary tumour location, N (%) Ovary Fallopian tubes Primary peritoneal Unknown	35 (87)	33 (82)	31 (78)
	0 (0)	1 (3)	0 (0)
	4 (10)	4 (10)	6 (15)
	1 (3)	2 (5)	3 (7)

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: C FALANDRY

EWOC-1 patients' characteristics (2)

Characteristic	Arm A (3wCb-P)	Arm B (3wCb)	Arm C (wCb-P)
	N=40	N=40	N=40
Histology, N (%) serous others	24 (60) 16 (40)	24 (60) 16 (40)	28 (70) 12 (30)
FIGO stage, N (%) III IV missing	26 (65)	24 (60)	29 (72)
	13 (32)	15 (37)	11 (28)
	1 (3)	1 (3)	0 (0)
Debulking surgery, N (%) None or macroscopic residue Complete surgical resection	37 (92)	38 (95)	37 (92)
	3 (7)	2 (5)	3 (7)

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

EWOC-1 primary endpoint

N = 120	Arm A (3wCb-P) N=40	Arm B (3wCb) N=40	Arm C (wCb-P) N=40
Patients not treated	3	1	1
Completed 6 cycles	26 (65%)	19 (47.5%)	24 (60%)

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

EWOC-1 toxicity

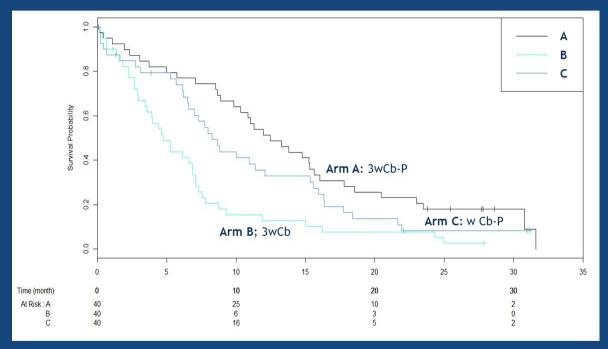
Toxicity	Arm A	(3wCb-P)	Arm B	(3wCb)	Arm C	(wCb-P)
Haematological toxicity (%)			Grad	le <u>></u> 3		
Anaemia Thrombopenia Neutropenia		10 5 12.5		2.5 15 20	32	7,5) 2.5
Febrile neutropenia		7.5 (1†)		0		0
Non-haematological toxicity (%)	All grades	Grade <u>></u> 3	All grades	Grade <u>></u> 3	All grades	Grade <u>></u> 3
Nausea/vomiting	52.5	5	37.5	2.5	55	0
Constipation	45	0	32.5	0	45	0
Diarrhea	35	7.5	17.5	0	35	2.5
Neuropathy sensory	55	5	7.5	0	32.5	7.5
Total alopecia	32.5	0	2.5	0	15	0
Fatigue	70	10	72.5	7.5	85	10
Pain	42.5	5	47.5	2.5	50	0
General physical health deterioration	2.5	2.5 (1†)	10.0	0	2.5	2.5(1†)
Treatment stopping due to toxicity N (%)	8	(20)	6 (15)	9 (2	22.5)

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY:

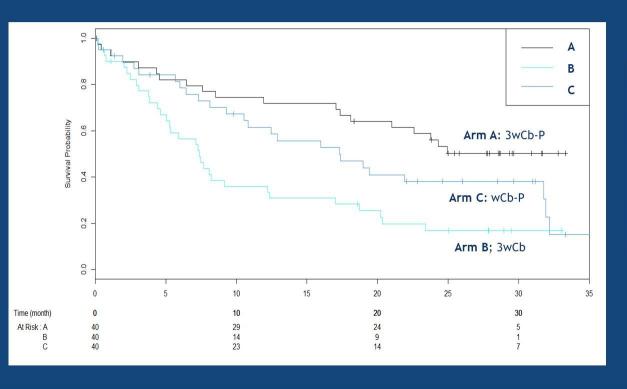
EWOC-1 treatment stopping: other reasons



Reason	Arm A (3wCb-P)	Arm B (3wCb)	Arm C (wCb-P)
	N (%)	N (%)	N (%)
Lack of efficacy	3 (7.5)	12 (30)*	2 (5)
Other	0 (0)	2 (5)	2 (5)
Consent withdrawal	0 (0)	0 (0)	2 (5)

* p = 0.003

EWOC-1 Progression-free survival



	Arm A	Arm B	Arm C
Events, N (%)	34 (85)	38 (95)	34 (85)
Median, mos (95% CI)	12.5 (10.3 - 15.3)	4.8 (3.6-15.3)	8.3 (6.6-15.3)
HR (95% CI)	1 (REF)	2.51 (1.56,4.04)	1.41 (0.87,2.28)
P Wald test	-	< 0.001	0.162
P Log-Rank	< 0.001		

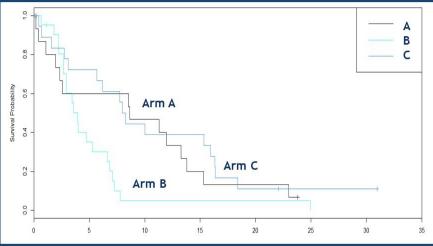
EWOC-1 Overall survival

	Arm A	Arm B	Arm C
Events, N (%)	19 (47)	32 (80)	25 (62)
Median, mos (95% CI)	NR (21 - 32.2)	7.4 (5.3 - 32.2)	17.3 (10.8 - 32.2)
HR (95% CI)	1 (REF)	2.79 (1.57,4.96)	1.6 (0.88,2.92)
P Wald test	-	< 0.001	0.123
P Log-Rank	0.001		

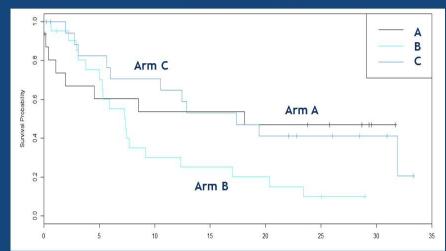
NR: Not reached

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.


PRESENTED BY: CFALANDRY

The carboplatin single agent arm is also worse even for the most vulnerable patients (GVS 4 & 5)



Progression-free survival

	Arm A	Arm B	Arm C
Events, N (%)	14 (88)	20 (95)	16 (84)
Median, mos (95% CI)	8.7 (2.3 - 16.4)	3.9 (2.9 - 16.4)	8.1 (5.7 - 16.4)
HR (95% CI)	1 (REF)	2.34 (1.44,3.8)	1.31 (0.8,2.14)
P wald test	(-)	< 0,001	0,29
P log-rank		0.002	·

Overall survival

	Arm A	Arm B	Arm C
Events, N (%)	8 (50)	18 (86)	11 (58)
Median, mos (95% CI)	18.1 (3 - NA)	7.4 (5.3 - NA)	17.4 (10.5 - NA)
HR (95% CI)	1 (REF)	2.61 (1.46,4.68)	1.53 (0.83,2.82)
P wald test	<u></u>	0,001	0,18
P log-rank		0.003	

PRESENTED AT:

#ASCO19 Slides are the property of the author,

PRESENTED BY: CFALANDRY

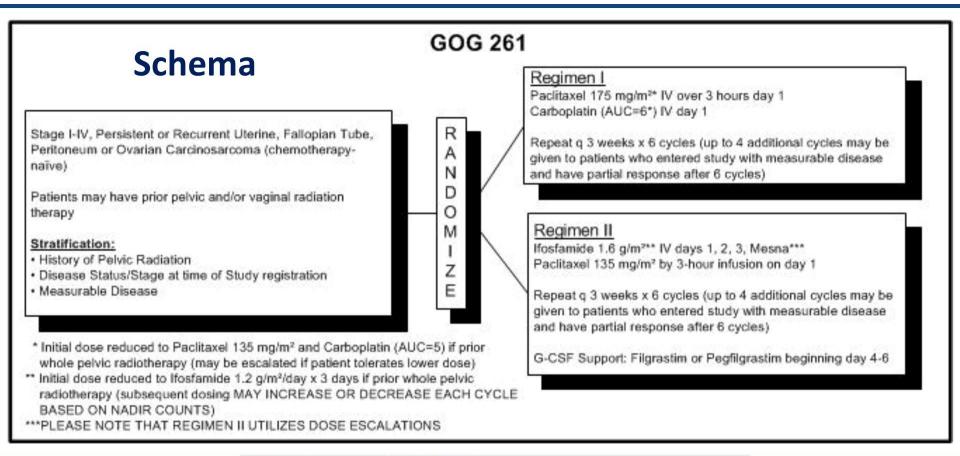
EWOC-1 conclusions

- Compared to 3-weekly and weekly carboplatin-paclitaxel regimens, carboplatin single agent was less active with significant worse survival outcome in vulnerable older pts with GVS > 3
- These findings were also observed in the most vulnerable patients (GVS 4 & 5)

Even vulnerable older ovarian cancer patients should be offered a carboplatin-paclitaxel regimen

A randomized phase 3 trial of paclitaxel (P) plus carboplatin (C) versus paclitaxel plus ifosfamide (I) in chemotherapy-naive patients with stage I-IV, persistent or recurrent carcinosarcoma of the uterus or ovary: An NRG Oncology trial.

Matthew A. Powell, Virginia L. Filiaci, Martee L. Hensley, Helen Q Huang, Kathleen N. Moore, Krishnansu S. Tewari, Larry J. Copeland, Angeles Alvarez Secord, David G Mutch, Alessandro Santin, William Richards, David Philip Warshal, Nicola M. Spirtos, Paul Disilverstro, Olga Ioffe, David S. Miller



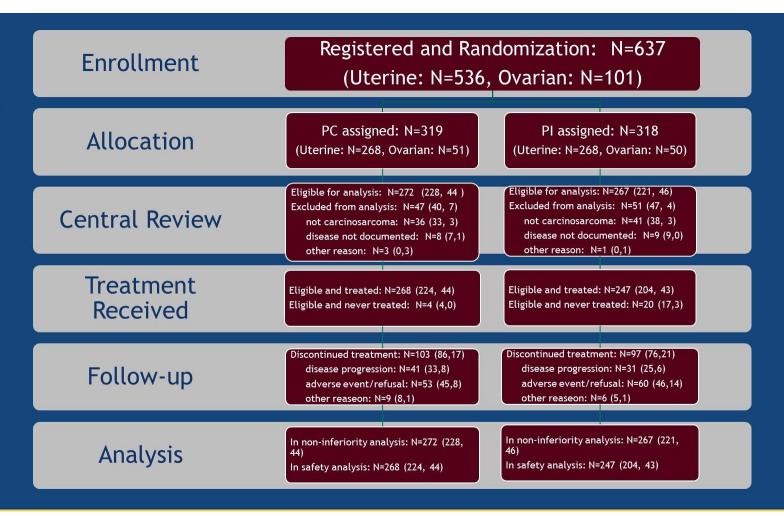
#ASCO19

Slides are the property of the author, permission required for reuse.

08/17/2009 Activated: Closed to accrual: 03/24/2014

#ASCO19 Slides are the property of the author,

PRESENTED BY: Dr. Matthew A;. Powell


GOG 0261 Statistical Design: intention-to-treat analysis among eligible patients non-inferiority design

- Primary endpoint: OS
- Secondary endpoints: PFS, AEs, QOL
- Planned sample size: 364
- type I error is limited to 5% for a one-tail stratified log rank test of inferiority (HR=1.2 relative to the ifosfamide and paclitaxel arm) with 80% power.
- Pre-planned interim analysis of survival for efficacy

#ASCO19
Slides are the property of the author, permission required for reuse.

Consort diagram

#ASCO19

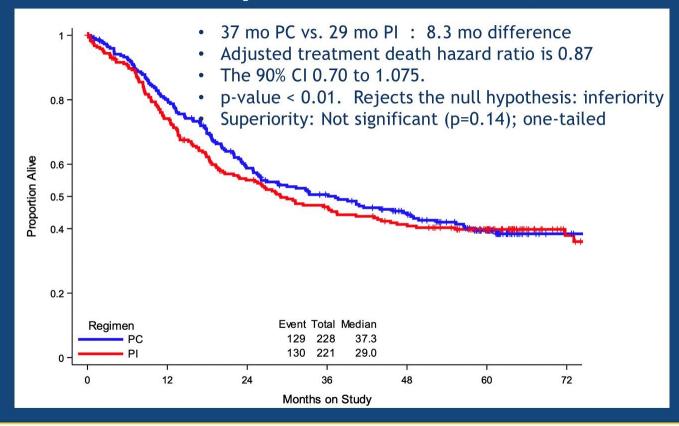
Slides are the property of the author, permission required for reuse.

PRESENTED BY:

GOG 0261: Patient Characteristics (Uterine) Cohort

	Regimen					
Characteristic	PC		PI		Total	
	N	%	N	%	N	%
Age (median)	65		64			
BMI (median)	30.	4	30.7			
Race						
White	150	65.8	133	60.2	283	63.0
Black/African American	66	28.9	72	32.6	138	30.7
Asian	9	3.9	9	4.1	18	4.0
Am Indian/Alaskan Native	2	0.9	1	0.5	3	0.7
Performance Status						
0	149	65.4	119	53.8	268	59.7
1	68	29.8	94	42.5	162	36.1
2	11	4.8	8	3.6	19	4.2
Primary Site						
Uterine Corpus	228	100.0	221	100.0	449	100.0
Disease status (verified)						
Clin/Surg Stage I/II	103	45.2	102	46.2	205	45.7
Stage III/IV	106	46.5	103	46.6	209	46.5
Recurrent/Persistent	19	8.3	16	7.2	35	7.8
Prior RT (verified)						
No	197	86.4	192	86.9	389	86.6
Yes	31	13.6	29	13.1	60	13.4
Measurable Disease (verified)						
No	153	67.1	147	66.5	300	66.8
Yes	75	32.9	74	33.5	149	33.2

	Regimen					
	PO		PI			
	N	%	% N			
Number of cycles						
0 cycles	4	1.8	17	7.7		
1-3 cycles	44	19.3	33	14.9		
4-6 cycles	160	70.2	159	71.9		
7-10 cycles	20	8.8	12	5.4		
Total	228	50.8	221	49.2		

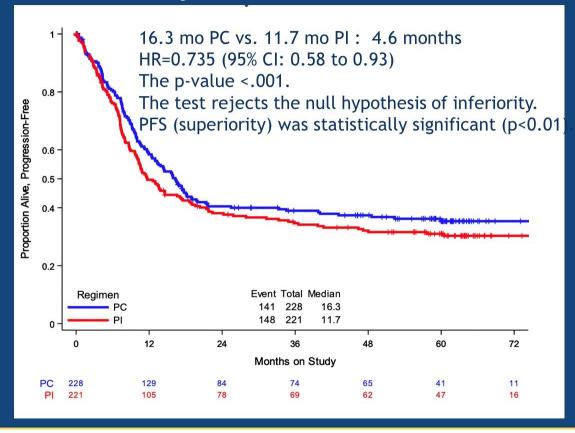

Protocol Violations	Paclitax Carbopla N	Ifosfamide Paclitaxel N %		
		%		,0
Minor	38	14.2	55	20.5
Major	21	7.8	32	11.9

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr. Matthew A. Powell, MD

GOG 0261: Primary Outcome Uterine Cohort: OS



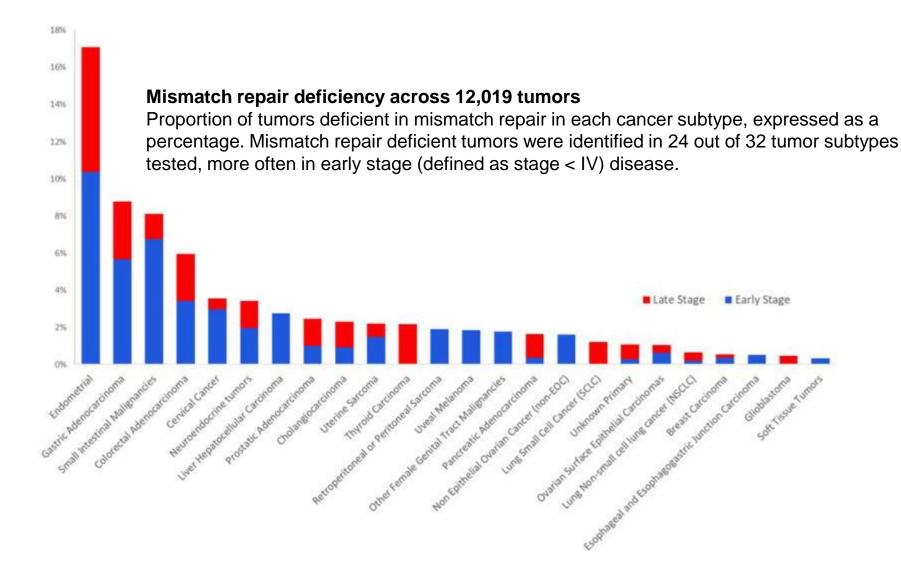
#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr. Matthew A. Powell, MD

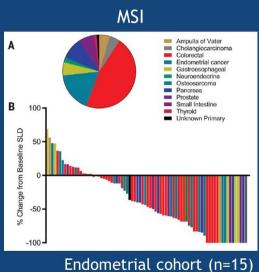
GOG 0261: Secondary Outcomes Uterine Cohort: PFS

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr. Matthew A. Powell, MD

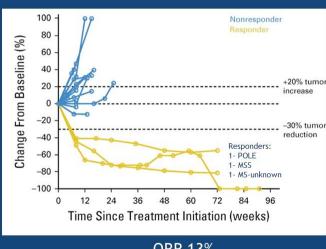

Conclusions

- PC not-inferior to PI with trend towards improved Overall Survival
- Superior PFS for the PC regimen
- Similar predictable toxicity and QOL
- PC regimen likely less expensive (1 day vs 3; limited use of expensive growth factors)
- These results establish a new standard regimen for women with Carcinosarcoma



#ASCO19
Slides are the property of the author, permission required for reuse.

Cancers deficient in mismatch repair (MMR) contain exceptionally high numbers of somatic mutations



Response to single-agent PD-1 blockade in endometrial cancer

CR: 3 (20%) PR: 5 (33%) SD: 3 (20%)

Non-MSI Endometrial (PD-L1)

ORR 13%

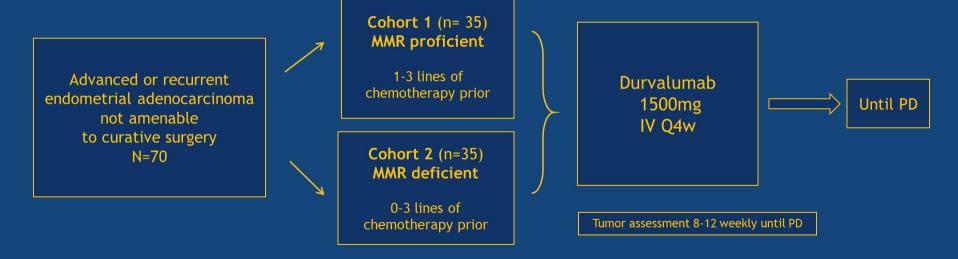
Science. 2017 Jul 28;357(6349):409-413; J Clin Oncol. 2017 Aug 1;35(22):2535-2541.

#ASCO19 Slides are the property of the author,

PRESENTED BY:

Vicky Makker, MD

Phase 2 trial of Durvalumab in Advanced Endometrial cancer (PHAEDRA)


Yoland Antill, P-S Kok, E Barnes, K Robledo, M Friedlander, S Baron-Hay, C Shannon, J Coward, P Beale, G Goss, T Meniawy, S Yip, D Smith, A Spurdle, M Parry, J Andrews, M Kelly, MR Stockler and L Mileshkin on behalf of Australia New Zealand Gynaecological Oncology Group (ANZGOG).

Study Schema

Design: Open-label, multicentre, Phase II, non-comparative trial with 2 cohorts

- MMR proficient (normal MMR protein expression on IHC)
- MMR deficient (loss of expression of at least one MMR protein on IHC)

Aim: To determine the activity and safety of durvalumab in advanced Endometrial Cancer

PRESENTED AT: 2019 ASCO

#ASCO19

Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Yoland Antill

Primary objective: OTRR (iRECIST)

	dMMR ((n =35)	pMMR (n=35)			
OTRR	15	(43%)	1	(3%)		
DCR	23	(66%)	10	(29%)		
CR	5	(14%)	0	(0%)		
PR	10	(29%)	1	(3%)		
SD	8	(23%)	9	(26%)		
Non-evaluable*	0	(0%)	1	(3%)		

1 non-evaluable as no RECIST assessment after registration dMMR- MMR deficient, pMMR- MMR proficient

OTRR: Objective Tumor Response Rate DCR: Disease Control Rate

#ASCO19
Slides are the property of the author, permission required for reuse.

Numbers of patients with adverse events

All AEs	N =71	
All grade	64	24
Immune-related AEs	Any grade	≥ Grade 3
Hyperthyroidism	8	0
Hypothyroidism	7	0
Hepatitis	1	1
Pneumonitis	2	0
No. of patients who had treatment-related AEs	14 patients	1 patient

Phase 2, two-group, two-stage study of avelumab in patients (pts) with microsatellite stable (MSS), microsatellite instable (MSI), and polymerase epsilon (*POLE*) mutated recurrent/persistent endometrial cancer (EC) – (NCT02912572)

Panagiotis A. Konstantinopoulos¹, Joyce F. Liu¹, Weixiu Luo¹, Carolyn N. Krasner¹, Jeffrey J. Ishizuka¹, Allison A. Gockley², Mary K. Buss³, Doga C. Gulhan⁴, Susana M. Campos¹, Elizabeth Stover¹, Alexi A. Wright¹, Whitfield B. Growdon⁵, Jennifer Curtis¹, Ariana Peralta¹, Patrice Basada¹, Roxanne Quinn¹, Kathryn P. Gray¹, Richard T. Penson⁵, Stephen A. Cannistra³, Gini F. Fleming⁶, Ursula A. Matulonis¹

¹Dana-Farber Cancer Institute, Boston, MA; ²Brigham and Women's Hospital, Boston, MA; ³Beth Israel Deaconess Medical Center, Boston, MA; ⁴Harvard Medical School, Boston, MA; ⁵Massachusetts General Hospital, Boston, MA; ⁶The University of Chicago Medicine, Chicago, IL

Avelumab Confirmed Objective Response and PFS6

RESPONSE	Patients, No				
	MMRD cohort (N=15)	MMRP/non-POLE Cohort (N=16)			
Best Overall Response					
CR	1	0			
PR	3	1			
SD	4	4			
PD	4	9			
Not evaluable	3	2			
ORR, % (95% CI)	26.7 (7.8-55.1)	6.25 (0.16-30.2)			
PFS6 Response					
Yes	6	1			
No	9	15			
PFS6 Response, %	40 (16.3-66.7)	6.25 (0.16-30.2)			

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Vicky Makker, MD

Treatment-Related AEs of any grade in ≥10% of pts OR grade ≥3

	Maximum Grade							
Toxicity	1		2		3		Total	
	N	%	N	%	N	%	N	%
Fatigue	10	32.3	1	3.2	0	0	11	35.5
Nausea	5	16.1	0	0	0	0	5	16.1
Hypothyroidism	1	3.2	2	6.5	1	3.2	4	12.9
Neutrophil count decreased	4	12.9	0	0	0	0	4	12.9
Anemia	1	3.2	0	0	2	6.5	3	9.7
Diarrhea	0	0	1	3.2	2	6.5	3	9.7
Rash acneiform	1	3.2	0	0	1	3.2	2	6.5
Sinus bradycardia	0	0	0	0	1	3.2	1	3.2
Myositis	0	0	0	0	1	3.2	1	3.2

Conclusions

- Checkpoint inhibitors active in dMMR EC
 - Avelumab and durvalumab are active in dMMR EC
- Checkpoint inhibitors as monotherapy show minimal activity in pMMR EC
 - Avelumab and durvalumab monotherapy did not demonstrate activity in pMMR EC
- dMMR status by IHC correlates with response to avelumab and durvalumab
- Routine use of IHC in EC when considering ICB therapy is supported
- Durable responses were observed irrespective of PD-L1 status (avelumab), multiple prior lines of therapy and somatic or germline origin of dMMR
- Biomarkers of response/mechanisms of resistance to ICB in EC need to be optimally defined and validated
- In pMMR EC checkpoint inhibitor combinations and checkpoint inhibitor-targeted therapy combination approaches should be explored

